
Lessons learned from deploying boot security 
features on embedded Linux systems
Brussels - 1st & 2nd February, 2025 Johann Gautier

Linux Embedded Engineer
Valentin Geffroy
Linux Embedded Engineer



FOSDEM'25Lessons learned from deploying boot security features 2

IoT.bzh at a glance

European CyberSecurity 
Organisation:

Cyber Valleys mapping

Our location
Brittany

30 years of embedded OS
Wind River (1990) - Intel (2009) - IoT.bzh (2015)

Open Source OS for Toyota, Suzuki, Subaru
IoT.bzh: +50% technical contributions 2016-2020

OS open source, Samsung TVs
Intel Vannes (2011-2015)

Our product
redpesk®: SaaS platform (or On Prem) Linux for 

industrial IoT (auto, mil-aero, energy...)

Some partnersOpen Source contributions
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Cybersecurity in embedded context

● Surface of attack
– Bypassing security rules (gain elevation access for critical features)
– Entry point for hackers: debug ports, unsafe authentication...
– Software vulnerabilities: user librairies, main OS packages (CVEs)

● Already effective rules, a lot more are coming!
–                                            : penalities for manufacturers who have not 

notify the relevant authorities about exploitable and vulnerabilities
– Specific automotive standards: ISO/SAE 21434 (Road Vehicles), ETSI 

EN 303 645 (IoT Devices), ISA/IEC 62443 (Industrial Automation)...
– All these rules are (or will be) mandatory for embedded market
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Addressing Risks
● Assert run the right code with the right permission

– Secure boot + TPM + Fuse master key

– Check signature on all installed software component

– Encrypt everything that should be (access code, data partition…)

– Systemic activation of MAC+DAC+Namespace+Cgroups...

● Full supply chain control from source code to executable

– Build under CI/CD factory

– Automatise SBOM, CVEs, test report, ...

– Secure the OTA

– Organize the system to be auditable (log generation, binary reproducibility, ...)
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What means boot integrity for us?  
General statement for our Linux-based images 

● Available on Intel x86 (64 bits) & ARM aarch (32/64 bits) but others arch too

● Different implementations depending on the embedded board vendor

● Goal: each bootflow step is guaranteed and must verify the next
in integrity or by a signature process
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Securizing Linux bootflow
NXP board (ARM SoC) simplified example

Vendor Firmwares

Vendor Bootchain
Bootloader

Board Support Package

ROM

Power ON

Kernel features
e.g. dm-verity, dm-crypt...

Verified Boot
to check the kernel
& the dtb integrity

SRK Table
to store public keys 
on the OTP eFuses

Check the U-Boot’s 
bootloader signature
thanks to the SRK table
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Securizing Linux bootflow
Hands on real production case
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Hands on real production case
One of our restricted embedded platform

● On top of Secure Boot we address challenges:
– Full Disk Encryption (FDE)
– Integrity Check (IC)
– Heavy hardware constraints (cost)

– Legal constraints: boot critical services in less than 30 seconds!
– Legacy constraints: Linux Kernel 3.18 or 4.14 (imposed by SoC vendor)

● Already complex without security 
● Very interesting challenge with security 

CPU: 32 bits 1-cores
Freq: @1Ghz
RAM: 1GB
NAND: 512MB

CPU: 64 bits 2-cores
Freq: @1.6Ghz
RAM: 256MB
NAND: 512MB

Platform 1 Platform 2



FOSDEM'25Lessons learned from deploying boot security features 9

Hands on real production case
Lessons learned for Full Disk Encryption (FDE)

● Encryption for each board (secrets are stored in HSM/TPM)
● Runtime encryption is required (not possible at build)
● Encryption overhead:

– At first boot (initial encrypting operation)
– At runtime (between 20-40% IO throughput)
– At update (partitions to encrypt again)

● All hardware acceleration must be activated (kernelspace)
● Memory overhead: dm-crypt does the job with 15MB
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Hands on real production case
Lessons learned for Integrity Check (IC)

● In our case, dm-verity costs too much (not respecting our constraints)
● How to do IC without dm-verity?
● At boot, when verifying read-only partitions (checksum)...

– ... boot time is not respecting our constraints :’(
● At runtime, the IC must be done on decrypted data
● The systematic data partition decryption adds an additionnal cost
● Optimizations are highly required (IO to optimize, things to do 

checksums on data partitions because the time is important)
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Lessons learned about boot security features
A conclusion for our Linux-based embedded platforms

● Need (a huge need!!) to enforce embedded systems

● Laws, rules and standards are evolving in this way

● Different implementations (SoC vendor)

● Security costs time and performances

● ... so optimization is required!

● Our work is still in progress
Adding secure boot features on restricted 

platform is CHALLENGING! 
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For more details,
● redpesk®

– Website: https://redpesk.bzh/

– Documentation: https://docs.redpesk.bzh/

– Sources: https://github.com/redpesk/readme

– Secure Boot: experiments on boards

● IoT.bzh
– Website: https://iot.bzh/

– Publications: https://iot.bzh/en/publications

● Community Support
– Matrix.org:  +redpesk:matrix.org

https://redpesk.bzh/
https://docs.redpesk.bzh/
https://github.com/redpesk/readme
https://docs.redpesk.bzh/docs/en/master/redpesk-os/trusted-boot/trusted-boot-experiments.html
https://iot.bzh/
https://iot.bzh/en/publications
https://app.element.io/#/group/+redpesk:matrix.org
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Q&A

Lorient Harbour, South Brittany, France 
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https://www.gnu.org/licenses/fdl-1.3.fr.html
https://creativecommons.org/licenses/by-sa/3.0/deed.fr
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redpesk OS

● LTS version based on RHEL devel version 
based on CentOS Stream

● Support cross-build or emulated-build

● BSP (Board Support Package) allowing to support 
various embedded boards

● Based on RPM packages

● Enriched by µservices & security frameworks

Sources available at
https://github.com/redpesk

redpesk® embedded software for IoT

redpesk Factory

● Ease development and integration 
workflows in cross environment

● Design for developers, integrator, QA 
engineers, delivery managers

● CI/CD: automatic rebuild, testing

● Based on Koji (Fedora build system) with 
extensions to support cross-building

Community edition
 https://community-app.redpesk.bzh

https://github.com/redpesk
https://community-app.redpesk.bzh/
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redpesk® factory based on proven tools

Koji build
System

RPMs + Images

SBOM / VXE
Testing

 

Audit test
Rackable Test Module

CI/CD

Release
Management OTA

redpesk® factory 

redpesk® webUI / CLI

              

         redpesk® OS 

Infra

CI/CD

Audit tools

Builder

Backend/Frontend/Perm

dnsmasq

    Gosec

 

Linux BSP (*)

 

App / User code
& App Framework

 

Linux mainline

Authentication 

Storage

Testing

LAVA

OTA
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Hands on real production case
Lessons learned for Full Disk Encryption (FDE)
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Hands on real production case
Lessons learned for Integrity Check (IC)
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