
Lessons learned from deploying boot security
features on embedded Linux systems
Brussels - 1st & 2nd February, 2025 Johann Gautier

Linux Embedded Engineer
Valentin Geffroy
Linux Embedded Engineer

FOSDEM'25Lessons learned from deploying boot security features 2

IoT.bzh at a glance

European CyberSecurity
Organisation:

Cyber Valleys mapping

Our location
Brittany

30 years of embedded OS
Wind River (1990) - Intel (2009) - IoT.bzh (2015)

Open Source OS for Toyota, Suzuki, Subaru
IoT.bzh: +50% technical contributions 2016-2020

OS open source, Samsung TVs
Intel Vannes (2011-2015)

Our product
redpesk®: SaaS platform (or On Prem) Linux for

industrial IoT (auto, mil-aero, energy...)

Some partnersOpen Source contributions

FOSDEM'25Lessons learned from deploying boot security features 3

Cybersecurity in embedded context

● Surface of attack
– Bypassing security rules (gain elevation access for critical features)
– Entry point for hackers: debug ports, unsafe authentication...
– Software vulnerabilities: user librairies, main OS packages (CVEs)

● Already effective rules, a lot more are coming!
– : penalities for manufacturers who have not

notify the relevant authorities about exploitable and vulnerabilities
– Specific automotive standards: ISO/SAE 21434 (Road Vehicles), ETSI

EN 303 645 (IoT Devices), ISA/IEC 62443 (Industrial Automation)...
– All these rules are (or will be) mandatory for embedded market

FOSDEM'25Lessons learned from deploying boot security features 4

Addressing Risks
● Assert run the right code with the right permission

– Secure boot + TPM + Fuse master key

– Check signature on all installed software component

– Encrypt everything that should be (access code, data partition…)

– Systemic activation of MAC+DAC+Namespace+Cgroups...

● Full supply chain control from source code to executable

– Build under CI/CD factory

– Automatise SBOM, CVEs, test report, ...

– Secure the OTA

– Organize the system to be auditable (log generation, binary reproducibility, ...)

FOSDEM'25Lessons learned from deploying boot security features 5

What means boot integrity for us?
General statement for our Linux-based images

● Available on Intel x86 (64 bits) & ARM aarch (32/64 bits) but others arch too

● Different implementations depending on the embedded board vendor

● Goal: each bootflow step is guaranteed and must verify the next
in integrity or by a signature process

FOSDEM'25Lessons learned from deploying boot security features 6

Securizing Linux bootflow
NXP board (ARM SoC) simplified example

Vendor Firmwares

Vendor Bootchain
Bootloader

Board Support Package

ROM

Power ON

Kernel features
e.g. dm-verity, dm-crypt...

Verified Boot
to check the kernel
& the dtb integrity

SRK Table
to store public keys
on the OTP eFuses

Check the U-Boot’s
bootloader signature
thanks to the SRK table

S
ec

ur
e

bo
ot

im
pl

em
en

ta
tio

n
Ty

pi
ca

l b
oo

t
ch

ai
n

ill
us

tr
at

io
n Kernel load/exec

systemD services

base OS apps

FOSDEM'25Lessons learned from deploying boot security features 7

Securizing Linux bootflow
Hands on real production case

FOSDEM'25Lessons learned from deploying boot security features 8

Hands on real production case
One of our restricted embedded platform

● On top of Secure Boot we address challenges:
– Full Disk Encryption (FDE)
– Integrity Check (IC)
– Heavy hardware constraints (cost)

– Legal constraints: boot critical services in less than 30 seconds!
– Legacy constraints: Linux Kernel 3.18 or 4.14 (imposed by SoC vendor)

● Already complex without security
● Very interesting challenge with security

CPU: 32 bits 1-cores
Freq: @1Ghz
RAM: 1GB
NAND: 512MB

CPU: 64 bits 2-cores
Freq: @1.6Ghz
RAM: 256MB
NAND: 512MB

Platform 1 Platform 2

FOSDEM'25Lessons learned from deploying boot security features 9

Hands on real production case
Lessons learned for Full Disk Encryption (FDE)

● Encryption for each board (secrets are stored in HSM/TPM)
● Runtime encryption is required (not possible at build)
● Encryption overhead:

– At first boot (initial encrypting operation)
– At runtime (between 20-40% IO throughput)
– At update (partitions to encrypt again)

● All hardware acceleration must be activated (kernelspace)
● Memory overhead: dm-crypt does the job with 15MB

FOSDEM'25Lessons learned from deploying boot security features 10

Hands on real production case
Lessons learned for Integrity Check (IC)

● In our case, dm-verity costs too much (not respecting our constraints)
● How to do IC without dm-verity?
● At boot, when verifying read-only partitions (checksum)...

– ... boot time is not respecting our constraints :’(
● At runtime, the IC must be done on decrypted data
● The systematic data partition decryption adds an additionnal cost
● Optimizations are highly required (IO to optimize, things to do

checksums on data partitions because the time is important)

FOSDEM'25Lessons learned from deploying boot security features 11

Lessons learned about boot security features
A conclusion for our Linux-based embedded platforms

● Need (a huge need!!) to enforce embedded systems

● Laws, rules and standards are evolving in this way

● Different implementations (SoC vendor)

● Security costs time and performances

● ... so optimization is required!

● Our work is still in progress
Adding secure boot features on restricted

platform is CHALLENGING!

FOSDEM'25Lessons learned from deploying boot security features 12

For more details,
● redpesk®

– Website: https://redpesk.bzh/

– Documentation: https://docs.redpesk.bzh/

– Sources: https://github.com/redpesk/readme

– Secure Boot: experiments on boards

● IoT.bzh
– Website: https://iot.bzh/

– Publications: https://iot.bzh/en/publications

● Community Support
– Matrix.org: +redpesk:matrix.org

https://redpesk.bzh/
https://docs.redpesk.bzh/
https://github.com/redpesk/readme
https://docs.redpesk.bzh/docs/en/master/redpesk-os/trusted-boot/trusted-boot-experiments.html
https://iot.bzh/
https://iot.bzh/en/publications
https://app.element.io/#/group/+redpesk:matrix.org

FOSDEM'25Lessons learned from deploying boot security features 13

Q&A

Lorient Harbour, South Brittany, France

T
hi

s
p

ic
tu

re
 is

 a
n

 o
ri

g
in

a
l p

ic
tu

re
 ta

ke
n

 b
y

Ja
ck

 M
a

m
e

le
t

in
 2

0
0

6
.

It
 is

 u
n

d
e

r
th

e
 G

N
U

 F
re

e
 D

o
cu

m
e

nt
a

tio
n

 L
ic

e
n

se
 a

n
d

 t
h

e
 C

re
a

tiv
e

 C
o

m
m

o
n

s
A

tt
rib

u
tio

n
.

https://www.gnu.org/licenses/fdl-1.3.fr.html
https://creativecommons.org/licenses/by-sa/3.0/deed.fr

FOSDEM'25Lessons learned from deploying boot security features 14

redpesk OS

● LTS version based on RHEL devel version
based on CentOS Stream

● Support cross-build or emulated-build

● BSP (Board Support Package) allowing to support
various embedded boards

● Based on RPM packages

● Enriched by µservices & security frameworks

Sources available at
https://github.com/redpesk

redpesk® embedded software for IoT

redpesk Factory

● Ease development and integration
workflows in cross environment

● Design for developers, integrator, QA
engineers, delivery managers

● CI/CD: automatic rebuild, testing

● Based on Koji (Fedora build system) with
extensions to support cross-building

Community edition
 https://community-app.redpesk.bzh

https://github.com/redpesk
https://community-app.redpesk.bzh/

FOSDEM'25Lessons learned from deploying boot security features 15

redpesk® factory based on proven tools

Koji build
System

RPMs + Images

SBOM / VXE
Testing

Audit test
Rackable Test Module

CI/CD

Release
Management OTA

redpesk® factory

redpesk® webUI / CLI

 redpesk® OS

Infra

CI/CD

Audit tools

Builder

Backend/Frontend/Perm

dnsmasq

 Gosec

Linux BSP (*)

App / User code
& App Framework

Linux mainline

Authentication

Storage

Testing

LAVA

OTA

FOSDEM'25Lessons learned from deploying boot security features 16

Hands on real production case
Lessons learned for Full Disk Encryption (FDE)

FOSDEM'25Lessons learned from deploying boot security features 17

Hands on real production case
Lessons learned for Integrity Check (IC)

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17

