
How we doubled Chromium’s Speedometer scores &
developed the LoadLine page load benchmark

eseckler@chromium.org | Eric Seckler | Google UK | Android Web Perf

Chromium on Android
Web Performance

February, 2025 chromium

mailto:eseckler@chromium.org

Speedometer on Android Chrome 🎉
Speedometer 2.1 scores on Android Chrome increased 109% (e.g. Pixel Tablet: 97 in 2023 to 203 today).

Faster Speedometer => Faster page load

Thank you for
your contributions!
● Chrome/V8
● Android
● Pixel

● ARM
● Qualcomm

Table of
contents

Breaking down the timeline01

Deep-dive: Build optimizations02

Tooling to enable further analysis03

Beyond Speedometer: LoadLine04

Q&A05

Breaking down the timeline!

01.1 Build improvements

01.2 V8 and Blink improvements

01.3 Scheduling & OS

Details in our blog:
bit.ly/android-speedometer-2024

http://bit.ly/android-speedometer-2024

Build improvements

High-end build for Android Chrome (20-30%)
-O2 / -O3 instead of -Oz
64-bit Arm instead of 32-bit Arm
PGO profile based on Mac (64-bit Arm)

PGO improvements (9-10%)
PGO profile based on Android (64-bit Arm)

More recent PGO profiles

Orderfile improvements (4-7%)
Switch from 32-bit Arm to 64-bit Arm orderfile
Instrumentation support for increased inlining

Generation based on Speedometer 3

Increased inlining (4-6%)
ML inliner for cold code only
Increased cross- and within-

module inlining thresholds

V8 and Blink improvements

Faster innerHTML parsing (5%)
Fast-path parser for Android

V8's Sparkplug baseline compiler (6%)
Super-fast compiler as second tier

Garbage collection improvements (3-4%)
GC in idle time and on page navigation

Various Blink/V8 optimizations (11-13%+)
Faster parsing, text rendering, style, layout, ...
Maglev mid-tier compiler launch on Android

Scheduling & OS

Higher prioritization of CrRendererMain (4%)
Flagging CrRendererMain as high-priority thread via
Android Dynamic Performance Framework (ADPF)

Insights: Build improvements
Profiling to understand Chrome’s CPU bottlenecks

PMU data: high stalls & frontend-bound workload
Suite Frontend stalls Backend stalls

Angular2-TypeScript-TodoMVC 45.92% 18.32%

AngularJS-TodoMVC 43.12% 17.47%

BackboneJS-TodoMVC 55.49% 14.97%

Elm-TodoMVC 28.91% 19.35%

EmberJS-Debug-TodoMVC 28.72% 24.77%

EmberJS-TodoMVC 40.41% 20.01%

Flight-TodoMVC 52.32% 17.76%

Inferno-TodoMVC 44.32% 14.69%

Preact-TodoMVC 44.24% 19.10%

React-Redux-TodoMVC 28.03% 16.74%

React-TodoMVC 40.68% 16.36%

Vanilla-ES2015-Babel-Webpack-TodoMVC 38.50% 17.24%

Vanilla-ES2015-TodoMVC 38.42% 17.99%

VanillaJS-TodoMVC 40.66% 17.52%

VueJS-TodoMVC 44.08% 17.19%

jQuery-TodoMVC 28.41% 20.79%

Overall 36.22% 19.27%

Pixel 8 Pro (Cortex X3), Chrome M120, Speedometer 2.1, CrRendererMain only

Speedometer has many branches
(~20% of instructions)

Branch mispredicts are costly in many
ARM CPUs (instruction cache prefetch)

Optimizing code/branch layout for
branch target buffer, caches, and CPU
frontend parallelism is critical

CPUs with larger branch predictors and
instruction caches are beneficial

Optimized PGO (& CPU) -- bottleneck moves to backend
Subtest IPC Frontend stall rate Backend stall rate
Charts-chartjs 3.19 16.70% 36.16%
Charts-observable-plot 3.01 15.28% 40.54%
Editor-CodeMirror 2.86 23.91% 28.93%
Editor-TipTap 3.36 11.77% 35.44%
NewsSite-Next 2.15 28.81% 35.70%
NewsSite-Nuxt 2.18 28.54% 35.41%
Perf-Dashboard 2.23 29.63% 35.55%
React-Stockcharts-SVG 2.68 20.55% 38.79%
TodoMVC-Angular-Complex-DOM 2.38 24.72% 37.73%
TodoMVC-Backbone 2.10 31.98% 33.02%
TodoMVC-JavaScript-ES5 3.11 15.26% 42.27%
TodoMVC-JavaScript-ES6-[..] 2.96 13.74% 47.57%
TodoMVC-jQuery 3.09 14.26% 42.62%
TodoMVC-Lit-Complex-DOM 2.16 22.96% 43.60%
TodoMVC-Preact-Complex-DOM 1.88 22.73% 47.52%
TodoMVC-React-Complex-DOM 2.62 22.74% 37.56%
TodoMVC-React-Redux 2.91 24.52% 32.13%
TodoMVC-Svelte-Complex-DOM 1.91 24.24% 46.19%
TodoMVC-Vue 2.30 23.91% 39.81%
TodoMVC-WebComponents 2.14 23.08% 43.89%
Overall 2.69 20.78% 38.50%

Pixel 9 Pro (Cortex X4), Chrome M128, Speedometer 3.0, CrRendererMain only

PGO increases portion of not-taken
branches by placing hot blocks into
fall-through paths

Not-taken branches consume no BTB
space and enable more efficient
utilization of caches and frontend width

Orderfile (function ordering) improves
on top of this by reducing iTLB misses

Backend bottlenecks are now focus of
our investigations

Stalls remain high overall -- high mem-boundedness
Subtest Frontend stalls FE L3+ stalls Backend stalls BE L3+ stalls
Charts-chartjs 16.70% 7.91% 36.16% 17.30%
Charts-observable-plot 15.28% 6.83% 40.54% 18.94%
Editor-CodeMirror 23.91% 10.78% 28.93% 15.93%
Editor-TipTap 11.77% 4.21% 35.44% 9.29%
NewsSite-Next 28.81% 12.35% 35.70% 16.24%
NewsSite-Nuxt 28.54% 11.57% 35.41% 17.00%
Perf-Dashboard 29.63% 14.39% 35.55% 18.30%
React-Stockcharts-SVG 20.55% 8.84% 38.79% 19.20%
TodoMVC-Angular-Complex-DOM 24.72% 9.13% 37.73% 19.51%
TodoMVC-Backbone 31.98% 11.93% 33.02% 16.90%
TodoMVC-JavaScript-ES5 15.26% 6.82% 42.27% 14.52%
TodoMVC-JavaScript-ES6-[..] 13.74% 7.17% 47.57% 18.90%
TodoMVC-jQuery 14.26% 6.49% 42.62% 14.59%
TodoMVC-Lit-Complex-DOM 22.96% 10.56% 43.60% 21.67%
TodoMVC-Preact-Complex-DOM 22.73% 11.84% 47.52% 28.29%
TodoMVC-React-Complex-DOM 22.74% 8.54% 37.56% 20.13%
TodoMVC-React-Redux 24.52% 9.04% 32.13% 15.17%
TodoMVC-Svelte-Complex-DOM 24.24% 13.58% 46.19% 26.11%
TodoMVC-Vue 23.91% 9.46% 39.81% 21.19%
TodoMVC-WebComponents 23.08% 10.44% 43.89% 19.78%
Overall 20.78% 8.93% 38.50% 16.96%

Just under half of the stalls on
Cortex X4 stem from L2 misses

Plan to attribute L2 misses to code
and data via profiling

Pixel 9 Pro (Cortex X4), Chrome M128, Speedometer 3.0, CrRendererMain only

Tooling to enable further analysis

Perfetto with Chrome and system data sources

Breaking down Speedometer execution in traces

Annotate Perfetto traces with Speedometer phases + perf/simpleperf integration + C++/V8 symbolization

Allows breakdowns of callstacks, PMU counters, etc. by subtest

Additional low-level data sources: ETM and SPE

Beyond Speedometer

CUJs exercise browser components differently

Process Thread Component
Benchmark / CUJ

JetStream Speedometer Page load Scrolling Tap/Typing

Browser UI critical path critical path

TBD

Network critical path

ThreadPool
Renderer Main V8 impacts score impacts score critical path

Blink impacts score critical path

Compositor critical path critical path

ThreadPool GC/compile impacts score impacts score critical path

Raster critical path

JS workers WASM impacts score

GPU critical path critical path

SurfaceFlinger critical path critical path

... Degree of component usage (CPU-time-based)

CUJs exercise browser components differently

Process Thread Component
Benchmark / CUJ

JetStream Speedometer Page load Scrolling Tap/Typing

Browser UI critical path critical path

TBD

Network critical path

ThreadPool
Renderer Main V8 impacts score impacts score critical path

Blink impacts score critical path

Compositor critical path critical path

ThreadPool GC/compile impacts score impacts score critical path

Raster critical path

JS workers WASM impacts score

GPU critical path critical path

SurfaceFlinger critical path critical path

Developing new
lab workloads in 2024/25

bit.ly/loadline

Difficulties developing a page load benchmark

Relevance Metrics Noise

Select ~5 representative sites
based on product needs and
performance characteristics

Analyzed ~50 popular sites in
20+ dimensions via traces;
clustering similar ones.

Strive for maximum coverage

General-purpose loading
metrics (LCP, FCP, ..) don't work
well for low # sites

Custom instrumentation to
enable site-specific metrics
tracking readiness to interact

Strive for normal distribution

Sites evolve over time and
behave differently in different
geographies

Record and replay resource
loads via WPR on device;
avoid incompatible sites

Detect 1% change in 1hr

Example: Metric bimodality

Bimodality caused by LCP-related paint running before or after a long unrelated script execution

Occurrence of LCP (ms) over 260 runs

Example: Tracking a UX-relevant moment

Custom metrics aim to track the earliest moment that the main content is loaded and ready for interaction

↓ LCP ↓ onload↓ Custom metric

LoadLine stories: Phone (mobile) configuration

Page
(mobile)

CUJ type / Product narrative Performance characteristics Metric

amazon.co.uk
product page

Shopping: high usage ● average page load, large workload, large DOM/JS (but heavier on DOM)
● high on OOPIFs, input, http(s) resources, frame production

JS ready

cnn.com
article

News: high usage ● slow page load, large workload, large DOM/JS (but heavier on JS)
● high on iframes, main frame, local storage, cookies, http(s) resources

Main content
created

google.com
search results

Search: largest single CUJ ● fast page load, average workload, average DOM + JS
● high on main frame, local storage, video

LCP

globo.com
homepage

News / web portal: high usage ● slow page load, large workload, small DOM, large JS
● high on iframes, OOPIFs, http(s) resources, frame production, cookies

Cookie banner
closed

wikipedia.org
article

Reference work: simple/fast site ● fast page load, small workload, large DOM, small JS
● low on iframes, http(s) resources, frame production

Last important
event

http://amazon.co.uk
http://cnn.com
http://google.com
http://globo.com
http://wikipedia.org

LoadLine stories: Tablet (desktop) configuration

Page
(desktop)

CUJ type / Product narrative Performance characteristics Metric

amazon.co.uk
product page

Shopping: high usage ● average page load, large workload, large DOM, average JS
● high on OOPIFs, http(s) resources, frame production

JS ready

cnn.com
article

News: high usage ● slow page load, large workload, large DOM/JS (but heavier on JS)
● high on iframes, local storage, video, frame production, cookies

Main content
created

google.com
search results

Search: largest single CUJ ● fast page load, low workload, low DOM + JS
● high on main frame, local storage, low on video

LCP

youtube.com
video page

Media: high usage ● slow page load, very high workload, large DOM, small/average JS
● high on video

Cookie banner
closed

docs.google.com
document

Productivity: expect increased
relevance, challenging workload

● slow page load, large workload, large DOM + JS (heavier on JS)
● high on main frame, font resources

LCP

Larger focus on productivity & challenging stories for the tablet configuration

http://amazon.co.uk
http://cnn.com
http://google.com
http://youtube.com
http://docs.google.com

Caveats

Today, LoadLine is an internal Chromium optimization target – not (yet) capable of comparing browsers or platforms.

● Built for Android – site selection primarily based on mobile browsing (and Chromium only)
○ We provide phone (mobile) and tablet (desktop) workloads

● Covers fundamental CPU/GPU browser performance, but doesn’t cover many networking intrinsics
○ May be extended with e.g. a traffic-shaping proxy to approximate some networking effects

● Not a micro-benchmark: Workload can change depending on device characteristics (e.g. frame rate)
○ Reflects the adaptable nature of the web and end-to-end page load performance

● Limited number of stories, some browser features are not captured

● Custom metrics are rudimentary today, so caution needed when evaluating browser behavior changes

Based on crossbench

● Setup crossben.ch
● ./cb.py loadline-phone

Available as v1.1 now

● Docs: bit.ly/loadline
● Feedback encouraged

http://crossben.ch
http://bit.ly/loadline

Q&A

Thank you

