
Virtualization-assisted Security
A Resilient Security Foundation for the Linux Kernel

FOSDEM 2025

Sergej Proskurin | BlueRock Security

February 1-2, 2025

Motivation & Background
Status Quo

Problem: The Kernel Self-Protection Paradox

The Linux kernel is responsible for:
▸ Protecting and isolating applications in user space
▸ Protecting itself from unauthorized accesses

(e.g., kernel modules, exploits, BPF programs, etc.)

ring 0

ring 1

ring 2

ring 3

Increasing
privileges

Who protects the Linux kernel from malicious entities
with same privileges?

S. Proskurin | BlueRock Security FOSDEM 2025 2

Virtualization-assisted Security (VAS)
Rethinking Linux Kernel Security

Idea: Design the Linux kernel with Virtualization-assisted Security in mind

▸ Alleviate the strict separation between the Linux kernel and a VMM
▸ Empower Linux with new capabilities supported by the system’s virtualization extensions
▸ Virtualization extensions become inherent OS building blocks for defense purposes

▸ Equip Linux subsystems with security primitives offered by the VMM
▸ The VMM becomes a resilient security support layer offering holistic security services
▸ Define security policies to protect critical kernel code and data

▸ Strengthen the Linux kernel’s defense against malicious activities
▸ Enhances overall security without replacing OS responsibilities
▸ Detects and prevents unauthorized activities, despite the presence of kernel vulnerabilities

S. Proskurin | BlueRock Security FOSDEM 2025 3

Virtualization-assisted Security (VAS)
BlueRock Security Architecture

The Security Support Layer

▸ Based on the NOVA µhypervisor
▸ Provides a hypercall interface to

supply VMs with VAS capabilities
▸ Supports 64-bit Intel & Armv8-A

→ The conceptual architecture
is hypervisor-agnostic
(Similarly applicable to Linux KVM)

GPA to MPA
2nd level address translation

CPU

I/O

VMM

Machine-physical addresses (MPA)

Control Plane VMControl Plane VM Workload VMWorkload VM

Kernel Space

vCPU

GVA to GPA
1st level address translation

Guest-physical addresses (GPA)

Memory
Mgt

Process
Mgt

Device
Drivers

User Space

Policy
Engine

Event
Monitoring

System Call Interface

Hyper Call Interface

Kernel Space

vCPU
Guest-physical addresses (GPA)

GVA to GPA
1st level address translation

Memory
Mgt

Process
Mgt

Device
Drivers

User Space

Process Process Process

Container

System Call Interface

Hyper Call Interface

Synchronous
Hypercalls

Asynchronous
Events

S
ys

te
m

M
od

e

K
er

ne
lM

od
e

U
se

rM
od

e

S. Proskurin | BlueRock Security FOSDEM 2025 4

Virtualization-assisted Security (VAS)
BlueRock Security Architecture

The Workload VM

▸ Enlightened, VAS-aware
general-purpose Linux kernel

▸ Actively collaborates with the
security support layer

▸ Leverages VAS building blocks to
enhance the security of subsystems

→ Can be a standalone VM
GPA to MPA

2nd level address translation
CPU

I/O

VMM

Machine-physical addresses (MPA)

Control Plane VM

Control Plane VM Workload VM

Workload VM

Kernel Space

vCPU

GVA to GPA
1st level address translation

Guest-physical addresses (GPA)

Memory
Mgt

Process
Mgt

Device
Drivers

User Space

Policy
Engine

Event
Monitoring

System Call Interface

Hyper Call Interface

Kernel Space

vCPU
Guest-physical addresses (GPA)

GVA to GPA
1st level address translation

Memory
Mgt

Process
Mgt

Device
Drivers

User Space

Process Process Process

Container

System Call Interface

Hyper Call Interface

Synchronous
Hypercalls

Asynchronous
Events

S
ys

te
m

M
od

e
K

er
ne

lM
od

e
U

se
rM

od
e

S. Proskurin | BlueRock Security FOSDEM 2025 4

Virtualization-assisted Security (VAS)
BlueRock Security Architecture

Communication via hypercalls

▸ Policy initialization and initial
state/context sharing

▸ Policy compliance verification

Communication via virtio
▸ Optional event reporting

(process lifecycle, container drift, etc.)
▸ Focus on user space processes and

container events

→ Policy violations trigger
fault injections into the Workload VM

GPA to MPA
2nd level address translation

CPU

I/O

VMM

Machine-physical addresses (MPA)

Control Plane VM

Control Plane VM Workload VM

Workload VM

Kernel Space

vCPU

GVA to GPA
1st level address translation

Guest-physical addresses (GPA)

Memory
Mgt

Process
Mgt

Device
Drivers

User Space

Policy
Engine

Event
Monitoring

System Call Interface

Hyper Call Interface

Kernel Space

vCPU
Guest-physical addresses (GPA)

GVA to GPA
1st level address translation

Memory
Mgt

Process
Mgt

Device
Drivers

User Space

Process Process Process

Container

System Call Interface

Hyper Call Interface

Synchronous
Hypercalls

Asynchronous
Events

S
ys

te
m

M
od

e
K

er
ne

lM
od

e
U

se
rM

od
e

S. Proskurin | BlueRock Security FOSDEM 2025 4

Virtualization-assisted Security (VAS)
BlueRock Security Architecture

Communication via hypercalls

▸ Policy initialization and initial
state/context sharing

▸ Policy compliance verification

Communication via virtio
▸ Optional event reporting

(process lifecycle, container drift, etc.)
▸ Focus on user space processes and

container events

→ Policy violations trigger
fault injections into the Workload VM

GPA to MPA
2nd level address translation

CPU

I/O

VMM

Machine-physical addresses (MPA)

Control Plane VM

Control Plane VM Workload VM

Workload VM

Kernel Space

vCPU

GVA to GPA
1st level address translation

Guest-physical addresses (GPA)

Memory
Mgt

Process
Mgt

Device
Drivers

User Space

Policy
Engine

Event
Monitoring

System Call Interface

Hyper Call Interface

Kernel Space

vCPU
Guest-physical addresses (GPA)

GVA to GPA
1st level address translation

Memory
Mgt

Process
Mgt

Device
Drivers

User Space

Process Process Process

Container

System Call Interface

Hyper Call Interface

Synchronous
Hypercalls

Asynchronous
Events

S
ys

te
m

M
od

e
K

er
ne

lM
od

e
U

se
rM

od
e

S. Proskurin | BlueRock Security FOSDEM 2025 4

Virtualization-assisted Security (VAS)
BlueRock Security Architecture

The Control Plane VM (optional)

▸ Highly stripped-down,
VAS-aware Linux kernel

▸ Decouples system monitoring
and policy decision points

▸ Configures OPA-based policies
▸ Receives security events via virtio

from the Workload VM and VMM

→ A compromised workload VM
cannot easily evade monitoring

GPA to MPA
2nd level address translation

CPU

I/O

VMM

Machine-physical addresses (MPA)

Control Plane VM

Control Plane VM Workload VM

Workload VM

Kernel Space

vCPU

GVA to GPA
1st level address translation

Guest-physical addresses (GPA)

Memory
Mgt

Process
Mgt

Device
Drivers

User Space

Policy
Engine

Event
Monitoring

System Call Interface

Hyper Call Interface

Kernel Space

vCPU
Guest-physical addresses (GPA)

GVA to GPA
1st level address translation

Memory
Mgt

Process
Mgt

Device
Drivers

User Space

Process Process Process

Container

System Call Interface

Hyper Call Interface

Synchronous
Hypercalls

Asynchronous
Events

S
ys

te
m

M
od

e
K

er
ne

lM
od

e
U

se
rM

od
e

S. Proskurin | BlueRock Security FOSDEM 2025 4

Virtualization-assisted Security Primitives
Overview

The security support layer implements VAS primitives

▸ Linux kernel integrity targetting .text and .rodata
▸ Prevents unauthorized modification of the Linux kernel, modules, and BPF programs
▸ Safeguards the VDSO, idt_table, sys_call_table, etc.

▸ Selective data structure and pointer integrity
▸ Global data structures, including core_pattern, modprobe_path, etc.
▸ Process credentials, privileged inodes, system-trusted keyrings, fops, etc.

▸ Further security features for the Linux kernel:
▸ Control register value locking, SELinux policy protection, driver signature enforcement,
▸ Read-only file protection, kernel patching mediation, etc.

S. Proskurin | BlueRock Security FOSDEM 2025 5

Virtualization-assisted Security Primitives
Linux Kernel Integrity

GVA to GPA
1st level address translation

Guest-virtual addresses (GVA)

Guest-physical addresses (GPA)

Workload VM

G
ue

st
-c

on
tro

lle
d

GPA to MPA
2nd level address translation

VMM

V
M

M
-c

on
tro

lle
d

Machine-physical addresses (MPA)

The Linux kernel controls how and which memory regions are to be protected
▸ The Workload VM uses hypercalls to register memory regions in the VMM

▸ This applies to static kernel segments, as well as dynamically loaded code
▸ Combine the Linux kernel’s mm with Second-Level Address Translation (SLAT)

▸ Grant access permissions exclusively to registered memory regions

S. Proskurin | BlueRock Security FOSDEM 2025 6

Virtualization-assisted Security Primitives
Linux Kernel Integrity

GVA to GPA
1st level address translation

Guest-virtual addresses (GVA)

Guest-physical addresses (GPA)

Workload VM

G
ue

st
-c

on
tro

lle
d

GPA to MPA
2nd level address translation

VMM

V
M

M
-c

on
tro

lle
d

Machine-physical addresses (MPA)

Linux kernel integrity allows to identify unauthorized supervisor executions
▸ Detect any supervisor execution of non-registered kernel memory

▸ This is efficiently possible with hardware support (Intel MBEC / Arm PXN)
▸ Eliminate unauthorized code injections into the kernel

S. Proskurin | BlueRock Security FOSDEM 2025 6

Virtualization-assisted Security Primitives
Linux Kernel Integrity: Memory Model

GPA to MPA
2nd level address translation

VMM

Machine-physical addresses (MPA)

Integrity::CREATE

GPA: 0xCAFED000
Size: 4096
Perm: (r-x)

TRANSIENT: true
MUTABLE: false

Owner: LKM

Integrity::REMOVE

GPA: 0xCAFED000
Size: 4096

Owner: LKM

Integrity::CREATE

GPA: 0xD00D0000
Size: 4096
Perm: (rw-)

TRANSIENT: false
MUTABLE: true

Owner: Kernel

Integrity::UPDATE

GPA: 0xD00D0000
Size: 4096
Perm: (r--)

Owner: Kernel

Each registered memory region has an associated type and flags

▸ Memory types: CODE, CODE_PATCHABLE, DATA, DATA_READ_ONLY, etc.
▸ Hypervisor- and hardware-independent memory types
▸ Translate into hardware-defined memory permissions

▸ Memory flags: TRANSIENT and MUTABLE

S. Proskurin | BlueRock Security FOSDEM 2025 7

Virtualization-assisted Security Primitives
Linux Kernel Integrity: Memory Model

GPA to MPA
2nd level address translation

VMM

Machine-physical addresses (MPA)

Integrity::CREATE

GPA: 0xCAFED000
Size: 4096
Perm: (r-x)

TRANSIENT: true
MUTABLE: false

Owner: LKM

Integrity::REMOVE

GPA: 0xCAFED000
Size: 4096

Owner: LKM

Integrity::CREATE

GPA: 0xD00D0000
Size: 4096
Perm: (rw-)

TRANSIENT: false
MUTABLE: true

Owner: Kernel

Integrity::UPDATE

GPA: 0xD00D0000
Size: 4096
Perm: (r--)

Owner: Kernel

The TRANSIENT flag distinguishes between static and dynamic memory regions
▸ Transient memory regions are dynamic and can be removed

▸ E.g., .init.text sections, kernel modules, and BPF programs
▸ Non-transient memory regions are static and cannot be unmapped

▸ Static memory regions that do not change in benign contexts
▸ E.g., .text and .rodata

S. Proskurin | BlueRock Security FOSDEM 2025 7

Virtualization-assisted Security Primitives
Linux Kernel Integrity: Memory Model

GPA to MPA
2nd level address translation

VMM

Machine-physical addresses (MPA)

Integrity::CREATE

GPA: 0xCAFED000
Size: 4096
Perm: (r-x)

TRANSIENT: true
MUTABLE: false

Owner: LKM

Integrity::REMOVE

GPA: 0xCAFED000
Size: 4096

Owner: LKM

Integrity::CREATE

GPA: 0xD00D0000
Size: 4096
Perm: (rw-)

TRANSIENT: false
MUTABLE: true

Owner: Kernel

Integrity::UPDATE

GPA: 0xD00D0000
Size: 4096
Perm: (r--)

Owner: Kernel

The TRANSIENT flag distinguishes between static and dynamic memory regions
▸ Transient memory regions are dynamic and can be removed

▸ E.g., .init.text sections, kernel modules, and BPF programs
▸ Non-transient memory regions are static and cannot be unmapped

▸ Static memory regions that do not change in benign contexts
▸ E.g., .text and .rodata

S. Proskurin | BlueRock Security FOSDEM 2025 7

Virtualization-assisted Security Primitives
Linux Kernel Integrity: Memory Model

GPA to MPA
2nd level address translation

VMM

Machine-physical addresses (MPA)

Integrity::CREATE

GPA: 0xCAFED000
Size: 4096
Perm: (r-x)

TRANSIENT: true
MUTABLE: false

Owner: LKM

Integrity::REMOVE

GPA: 0xCAFED000
Size: 4096

Owner: LKM

Integrity::CREATE

GPA: 0xD00D0000
Size: 4096
Perm: (rw-)

TRANSIENT: false
MUTABLE: true

Owner: Kernel

Integrity::UPDATE

GPA: 0xD00D0000
Size: 4096
Perm: (r--)

Owner: Kernel

The MUTABLE flag allows memory regions to update their memory type
▸ Mutable memory regions allow only more-restrictive updates of their memory types

▸ E.g. the .data..ro_after_init section changes its memory type: DATA to DATA_READ_ONLY
▸ Immutable memory regions lock-down their contents

▸ Once the security permissions are applied, they cannot be undone
▸ Highly-constrained environments can lock-down the entire memory map

S. Proskurin | BlueRock Security FOSDEM 2025 7

Virtualization-assisted Security Primitives
Linux Kernel Integrity: Memory Model

GPA to MPA
2nd level address translation

VMM

Machine-physical addresses (MPA)

Integrity::CREATE

GPA: 0xCAFED000
Size: 4096
Perm: (r-x)

TRANSIENT: true
MUTABLE: false

Owner: LKM

Integrity::REMOVE

GPA: 0xCAFED000
Size: 4096

Owner: LKM

Integrity::CREATE

GPA: 0xD00D0000
Size: 4096
Perm: (rw-)

TRANSIENT: false
MUTABLE: true

Owner: Kernel

Integrity::UPDATE

GPA: 0xD00D0000
Size: 4096
Perm: (r--)

Owner: Kernel

The MUTABLE flag allows memory regions to update their memory type
▸ Mutable memory regions allow only more-restrictive updates of their memory types

▸ E.g. the .data..ro_after_init section changes its memory type: DATA to DATA_READ_ONLY
▸ Immutable memory regions lock-down their contents

▸ Once the security permissions are applied, they cannot be undone
▸ Highly-constrained environments can lock-down the entire memory map

S. Proskurin | BlueRock Security FOSDEM 2025 7

Virtualization-assisted Security Primitives
Linux Kernel Integrity: Challenges in Dynamic Environments

The Linux kernel is highly dynamic and heavily relies on run-time patching
▸ Alternative instructions, jump labels, static keys, static calls, tracepoints

▸ Optimize performance by replacing instructions, avoiding indirect jumps, etc.
▸ Enable kernel features by toggling rarely-used conditional code paths
▸ Attach probes/functions to statically (or dynamically) defined hooks

Attackers can abuse the patching facility to take over the kernel
▸ Attackers can reuse patching-related code gadgets
▸ Attackers can compromise patching-related data structures to

▸ Arbitrarily write to the kernel code segment, despite CFI
▸ Disarm security monitors (in part without having to change the code segment)

→ Challenge: How to reliably distinguish legitimate from malicious changes?

S. Proskurin | BlueRock Security FOSDEM 2025 8

Virtualization-assisted Security Primitives
Linux Kernel Integrity: Challenges in Dynamic Environments

The Linux kernel is highly dynamic and heavily relies on run-time patching
▸ Alternative instructions, jump labels, static keys, static calls, tracepoints

▸ Optimize performance by replacing instructions, avoiding indirect jumps, etc.
▸ Enable kernel features by toggling rarely-used conditional code paths
▸ Attach probes/functions to statically (or dynamically) defined hooks

Attackers can abuse the patching facility to take over the kernel
▸ Attackers can reuse patching-related code gadgets
▸ Attackers can compromise patching-related data structures to

▸ Arbitrarily write to the kernel code segment, despite CFI
▸ Disarm security monitors (in part without having to change the code segment)

→ Challenge: How to reliably distinguish legitimate from malicious changes?

S. Proskurin | BlueRock Security FOSDEM 2025 8

Virtualization-assisted Security Primitives
Linux Kernel Integrity: Challenges in Dynamic Environments

To thwart attacks abusing the patching facility we must:

(i) Ensure that the patching facility is always called from a benign context
(ii) Maintain integrity of patching-related data structures

Issue: While we can address (i) with CFI, (ii) remains an open problem!

Idea: Leverage Virtualization-assisted Security to achieve (i) and (ii)!

S. Proskurin | BlueRock Security FOSDEM 2025 9

Virtualization-assisted Security Primitives
Linux Kernel Integrity: Challenges in Dynamic Environments

To thwart attacks abusing the patching facility we must:

(i) Ensure that the patching facility is always called from a benign context
(ii) Maintain integrity of patching-related data structures

Issue: While we can address (i) with CFI, (ii) remains an open problem!

Idea: Leverage Virtualization-assisted Security to achieve (i) and (ii)!

S. Proskurin | BlueRock Security FOSDEM 2025 9

The Vault
Subsystem Isolation for the Linux Kernel

The Vault is a general-purpose security primitive to isolate subsystems

▸ Utilize hardware virtualization to define Vaults in kernel space
▸ Encapsulate and isolate sensitive code and data in dedicated sections in the Vault
▸ Empower Linux to shift entire subsystems into Vaults
▸ Partition and isolate Vault-protected subsystems from each other / the kernel

▸ The Linux kernel must not directly access arbitrary memory inside the Vault
▸ Unauthorized accesses trap into the security support layer
▸ Govern Vault transitions through designated transit points
▸ Maintain sensitive subsystem-related data exclusively inside the Vault

→ Attackers cannot divert control-flow to reuse code or alter sensitive data in the Vault

S. Proskurin | BlueRock Security FOSDEM 2025 10

The Vault
The NOVA GST Spaces Subsystem

Guest-physical
memory

Original View

Guest-physical
memory

2nd level
address translation

Machine-physical
memory

2nd level
address translation

(--x)

(rwx)
GPA MPA

Typically, a VMM uses one set of second level address translation tables (SLAT)
▸ Defines the guest’s global view on the physical memory

→ Changes in the global view are perceived by all vCPUs

S. Proskurin | BlueRock Security FOSDEM 2025 11

The Vault
The NOVA GST Spaces Subsystem

Guest-physical
memory

Original View

Guest-physical
memory

Alternative View

2nd level
address translation

Machine-physical
memory

2nd level
address translation

(--x)(rwx)
GPAGPA MPA MPA

Introducing the NOVA GST Spaces subsystem
▸ Maintains different views on the guest’s physical memory
▸ Allocates and assigns different memory views to vCPUs

→ Switch views instead of relaxing permissions in a global view!

S. Proskurin | BlueRock Security FOSDEM 2025 11

The Vault
Showing NOVA GST Spaces In Action

kernel view vault[1] vault[n]

(r--)

(---)

(---)

(r-x)

(rw-)

Guest-physical
memory

Machine-physical
memory

kernel view

(r--)

(---)

(rwx)

(---)

(---)

(rwx)

(rwx)

(rwx)

(rwx)

(rwx)

vault[1]

(rw-)

(r-x)

(---)

(---)

(---)

(rwx)

(rwx)

(rwx)

(rwx)

(rwx)

Leverage SLAT tables to configure multiple disjoint guest-physical memory views
▸ Only a single guest-physical memory view can be active at a given time
→ Propagate restrictive permissions of each Vault across all available memory views

S. Proskurin | BlueRock Security FOSDEM 2025 12

The Vault
Showing NOVA GST Spaces In Action

kernel view vault[1]

vault[n]

(r--)

(---)

(---)

(r-x)

(rw-)

Guest-physical
memory

Machine-physical
memorykernel view

(r--)

(---)

(rwx)

(---)

(---)

(rwx)

(rwx)

(rwx)

(rwx)

(rwx)

vault[1]

(rw-)

(r-x)

(---)

(---)

(---)

(rwx)

(rwx)

(rwx)

(rwx)

(rwx)

One Vault requires 2 memory views (restricted and relaxed view)
▸ The restricted kernel view unifies memory restrictions of all Vaults

▸ Configured as the default view on all vCPUs

S. Proskurin | BlueRock Security FOSDEM 2025 12

The Vault
Showing NOVA GST Spaces In Action

kernel view vault[1] vault[n]

(r--)

(---)

(---)

(r-x)

(rw-)

Guest-physical
memory

Machine-physical
memorykernel view

(r--)

(---)

(rwx)

(---)

(---)

(rwx)

(rwx)

(rwx)

(rwx)

(rwx)

vault[1]

(rw-)

(r-x)

(---)

(---)

(---)

(rwx)

(rwx)

(rwx)

(rwx)

(rwx)

For n Vaults, we define n + 1 views on the guest-physical memory
▸ Each {vault[i] ∣ i ∈ {1, ..., n}}

▸ Relaxes the permissions of sensitive memory in Vault i
▸ Restricts access to memory regions belonging to the kernel and Vaults ≠ i

S. Proskurin | BlueRock Security FOSDEM 2025 12

Integrating Vaults into the Linux Kernel
Harden the Patching and Tracing Facility Against Unauthorized Access

NOVA spaces

2nd level address translation

CPU

I/O

NOVA

Machine-physical memory

Workload VM

Kernel Space

vCPU
Guest-physical memory

Kernel Core Vault

.vault.data

.vault.text

Static Entry

Interrupt

Func Call
Static Return

Dynamic ReturnDynamic Exit

User Space

key

static_call_key

regfunc

unregfunc
...

struct tracepoint

code
target

key

struct jump_entry

Hyper Call Interface

S
ys

te
m

M
od

e
K

er
ne

lM
od

e
U

se
rM

od
e

Kernel View Vault ViewKernel View Vault View

(r--)

(---)

(rwx)

(rwx)

(rwx)

(rw-)

(r-x)

(---)

(---)

(---)

Vault’s API allows to partition the Linux kernel

▸ Move (patching |tracing)-related code and data
into designated sections within the vault

▸ Define authorized Vault entry and exit points

▸ Communicate locations of the Vault’s sections
and transition points to the VMM at boot time

S. Proskurin | BlueRock Security FOSDEM 2025 13

Integrating Vaults into the Linux Kernel
Harden the Patching and Tracing Facility Against Unauthorized Access

NOVA spaces

2nd level address translation

CPU

I/O

NOVA

Machine-physical memory

Workload VM

Kernel Space

vCPU
Guest-physical memory

Kernel Core Vault
.vault.data

.vault.text

Static Entry

Interrupt

Func Call
Static Return

Dynamic ReturnDynamic Exit

User Space

key

static_call_key

regfunc

unregfunc
...

struct tracepoint

code
target

key

struct jump_entry

Hyper Call Interface

S
ys

te
m

M
od

e
K

er
ne

lM
od

e
U

se
rM

od
e

Kernel View Vault ViewKernel View Vault View

(r--)

(---)

(rwx)

(rwx)

(rwx)

(rw-)

(r-x)

(---)

(---)

(---)

Key requirements for secure patching

1. Code outside the vault must not be able
to reuse patching-related code gadgets

2. Only code within the Vault can access
sensitive data structures
▸ struct alt_instr, struct jump_entry,
▸ struct tracepoint, etc.

3. Only code within the Vault is authorized to
instruct the VMM to patch kernel code

S. Proskurin | BlueRock Security FOSDEM 2025 13

Integrating Vaults into the Linux Kernel
Harden the Patching and Tracing Facility Against Unauthorized Access

NOVA spaces

2nd level address translation

CPU

I/O

NOVA

Machine-physical memory

Workload VM

Kernel Space

vCPU
Guest-physical memory

Kernel Core Vault
.vault.data

.vault.text

Static Entry

Interrupt

Func Call
Static Return

Dynamic ReturnDynamic Exit

User Space

key

static_call_key

regfunc

unregfunc
...

struct tracepoint

code
target

key

struct jump_entry

Hyper Call Interface

S
ys

te
m

M
od

e
K

er
ne

lM
od

e
U

se
rM

od
e

Kernel View Vault View

Kernel View Vault View

(r--)

(---)

(rwx)

(rwx)

(rwx)

(rw-)

(r-x)

(---)

(---)

(---)

Enforce isolation via NOVA GST Spaces

▸ The kernel view restricts access to the
Vault-protected code and data

▸ The Vault view defines permissions of
the isolated sections inside the vault

▸ NOVA Spaces govern Vault transitions
▸ Switching the memory view allows

to enter/exit the Vault

→ Technology not bound to NOVA

S. Proskurin | BlueRock Security FOSDEM 2025 13

Integrating Vaults into the Linux Kernel
Harden the Patching and Tracing Facility Against Unauthorized Access

NOVA spaces

2nd level address translation

CPU

I/O

NOVA

Machine-physical memory

Workload VM

Kernel Space

vCPU
Guest-physical memory

Kernel Core Vault
.vault.data

.vault.text

Static Entry

Interrupt

Func Call
Static Return

Dynamic ReturnDynamic Exit

User Space

key

static_call_key

regfunc

unregfunc
...

struct tracepoint

code
target

key

struct jump_entry

Hyper Call Interface

S
ys

te
m

M
od

e
K

er
ne

lM
od

e
U

se
rM

od
e

Kernel View Vault View

Kernel View Vault View

(r--)

(---)

(rwx)

(rwx)

(rwx)

(rw-)

(r-x)

(---)

(---)

(---)

Vault entries at designated locations

▸ Authorized entry points
▸ Define the Vault’s interface
▸ Annotated function entries

(future: leverage objtool)

▸ The Vault can be entered only by
executing trusted entry points

S. Proskurin | BlueRock Security FOSDEM 2025 13

Integrating Vaults into the Linux Kernel
Harden the Patching and Tracing Facility Against Unauthorized Access

NOVA spaces

2nd level address translation

CPU

I/O

NOVA

Machine-physical memory

Workload VM

Kernel Space

vCPU
Guest-physical memory

Kernel Core Vault
.vault.data

.vault.text

Static Entry

Interrupt

Func Call
Static Return

Dynamic ReturnDynamic Exit

User Space

key

static_call_key

regfunc

unregfunc
...

struct tracepoint

code
target

key

struct jump_entry

Hyper Call Interface

S
ys

te
m

M
od

e
K

er
ne

lM
od

e
U

se
rM

od
e

Kernel View Vault View

Kernel View Vault View

(r--)

(---)

(rwx)

(rwx)

(rwx)

(rw-)

(r-x)

(---)

(---)

(---)

Vault entries at designated locations

▸ Authorized entry points
▸ Define the Vault’s interface
▸ Annotated function entries

(future: leverage objtool)

▸ The Vault can be entered only by
executing trusted entry points

S. Proskurin | BlueRock Security FOSDEM 2025 13

Integrating Vaults into the Linux Kernel
Harden the Patching and Tracing Facility Against Unauthorized Access

NOVA spaces

2nd level address translation

CPU

I/O

NOVA

Machine-physical memory

Workload VM

Kernel Space

vCPU
Guest-physical memory

Kernel Core Vault
.vault.data

.vault.text

Static Entry

Interrupt

Func Call

Static Return

Dynamic ReturnDynamic Exit

User Space

key

static_call_key

regfunc

unregfunc
...

struct tracepoint

code
target

key

struct jump_entry

Hyper Call Interface

S
ys

te
m

M
od

e
K

er
ne

lM
od

e
U

se
rM

od
e

Kernel View Vault View

Kernel View Vault View

(r--)

(---)

(rwx)

(rwx)

(rwx)

(rw-)

(r-x)

(---)

(---)

(---)

Temporary Vault exits and returns

▸ Vault exits due to external functions
▸ Static return points:

identified via objtool
▸ Passed to the VMM during early boot

▸ Vault exits due to interrupts
▸ Dynamic return points:

extracted from the stack

▸ Authorized return conditions

▸ The Vault was legitimately opened
▸ The return address matches an

authorized return point

S. Proskurin | BlueRock Security FOSDEM 2025 13

Integrating Vaults into the Linux Kernel
Harden the Patching and Tracing Facility Against Unauthorized Access

NOVA spaces

2nd level address translation

CPU

I/O

NOVA

Machine-physical memory

Workload VM

Kernel Space

vCPU
Guest-physical memory

Kernel Core Vault
.vault.data

.vault.text

Static Entry

Interrupt

Func Call

Static Return

Dynamic Return

Dynamic Exit

User Space

key

static_call_key

regfunc

unregfunc
...

struct tracepoint

code
target

key

struct jump_entry

Hyper Call Interface

S
ys

te
m

M
od

e
K

er
ne

lM
od

e
U

se
rM

od
e

Kernel View Vault View

Kernel View Vault View

(r--)

(---)

(rwx)

(rwx)

(rwx)

(rw-)

(r-x)

(---)

(---)

(---)

Temporary Vault exits and returns

▸ Vault exits due to external functions
▸ Static return points:

identified via objtool
▸ Passed to the VMM during early boot

▸ Vault exits due to interrupts
▸ Dynamic return points:

extracted from the stack

▸ Authorized return conditions
▸ The Vault was legitimately opened
▸ The return address matches an

authorized return point

S. Proskurin | BlueRock Security FOSDEM 2025 13

Integrating Vaults into the Linux Kernel
Harden the Patching and Tracing Facility Against Unauthorized Access

NOVA spaces

2nd level address translation

CPU

I/O

NOVA

Machine-physical memory

Workload VM

Kernel Space

vCPU
Guest-physical memory

Kernel Core Vault

.vault.data

.vault.text

Static Entry

Interrupt

Func Call
Static Return

Dynamic Return

Dynamic Exit

User Space

key

static_call_key

regfunc

unregfunc
...

struct tracepoint

code
target

key

struct jump_entry

Hyper Call Interface

S
ys

te
m

M
od

e
K

er
ne

lM
od

e
U

se
rM

od
e

Kernel View Vault View

Kernel View Vault View

(r--)

(---)

(rwx)

(rwx)

(rwx)

(rw-)

(r-x)

(---)

(---)

(---)

The end of the Vault’s lifecycle

▸ The Vault closes when it reaches its
exit point

S. Proskurin | BlueRock Security FOSDEM 2025 13

Integrating Vaults into the Linux Kernel
Harden the Patching and Tracing Facility Against Unauthorized Access

NOVA spaces

2nd level address translation

CPU

I/O

NOVA

Machine-physical memory

Workload VM

Kernel Space

vCPU
Guest-physical memory

Kernel Core Vault

.vault.data

.vault.text

Static Entry

Interrupt

Func Call
Static Return

Dynamic Return

Dynamic Exit

User Space

key

static_call_key

regfunc

unregfunc
...

struct tracepoint

code
target

key

struct jump_entry

Hyper Call Interface

S
ys

te
m

M
od

e
K

er
ne

lM
od

e
U

se
rM

od
e

Kernel View Vault View

Kernel View Vault View

(r--)

(---)

(rwx)

(rwx)

(rwx)

(rw-)

(r-x)

(---)

(---)

(---)

The end of the Vault’s lifecycle

▸ The Vault closes when it reaches its
exit point

Wait, what about KPROBES?

S. Proskurin | BlueRock Security FOSDEM 2025 13

The KPROBES & BPF Conundrum
Seeking Community Insights

KPROBES & BPF progs serve as foundation for tracing and security frameworks

▸ Allows placing hooks at (almost) any point in the kernel
▸ Enables comprehensive introspection of kernel behavior

→ Ideal for debugging, profiling, and generating security events

Problem: Dangerous in the wrong hands

▸ KPROBES are not bound by namespaces
▸ Potential for leaking data among different execution contexts

▸ KPROBES-attached BPF programs are frequently deployed without being signed
▸ Approaches for signing BPF bytecode have been presented
▸ No definitive solution exists, just yet

(remaining challenges include relocations (CO-RE), or compiled BPF bytecode)

S. Proskurin | BlueRock Security FOSDEM 2025 14

The KPROBES & BPF Conundrum
Seeking Community Insights

Could VAS assist in limiting the attack surface of KPROBES & BPF progs?

▸ Move the KPROBE facility into a Vault?
→ Remove patching gadgets from the Linux kernel!

▸ Move the BPF JIT compiler into a Vault?
→ Thwart write attempts from other CPUs to pages holding the BPF program at compile-time

▸ Isolate BPF programs from sensitive contexts?
→ Disallow using BPF for exploit payloads

Feel free to reach out, we are open for feedback and collaboration!

S. Proskurin | BlueRock Security FOSDEM 2025 15

Final Words | Call for Action

▸ Engage with the Linux community
▸ BlueRock’s VAS Linux kernel 1 and NOVA 2 are open source
▸ Prepare patches to start getting parts of our code base into the Linux mainline

▸ Virtualization-assisted Security receives increasing attention from the industry
▸ Microsoft (L)VBS, Samsung Knox RKP, Huawei Security Hypervisor, etc.
▸ We are in need for a common, hypervisor-agnostic hypercall API for the Linux kernel

▸ Virtualization-assisted security has not been explored to its full extent
▸ Protections around KPROBES & BPF programs
▸ We are open for feedback!

1VAS Linux kernel: https://github.com/bedrocksystems/linux-bhv-patches
2NOVA µhypervisor: https://github.com/udosteinberg/NOVA

S. Proskurin | BlueRock Security FOSDEM 2025 16

https://github.com/bedrocksystems/linux-bhv-patches
https://github.com/udosteinberg/NOVA

Thank You
sergej@bluerock.io

A1: VAS Architecture

GPA to MPA
2nd level address translation

CPU

I/O

VMM

Machine-physical addresses (MPA)

Control Plane VM Workload VM

Kernel Space

vCPU

GVA to GPA
1st level address translation

Guest-physical addresses (GPA)

Memory
Mgt

Process
Mgt

Device
Drivers

User Space

Policy
Engine

Event
Monitoring

System Call Interface

Hyper Call Interface

Kernel Space

vCPU

GVA to GPA
1st level address translation

Guest-physical addresses (GPA)

User Space

Memory
Mgt

Process
Mgt

Device
Drivers

Process Process Process

Container

System Call Interface

Hyper Call Interface

S
ys

te
m

M
od

e
K

er
ne

lM
od

e
U

se
rM

od
e

S. Proskurin | BlueRock Security FOSDEM 2025 1

A2: Data Structure and Context-bound Pointer Integrity

Building blocks to protect security-critical data structures

▸ Leverage the invariants of the data structure’s (d) life-cycle to protect their integrity
▸ Bind d to its unique and immutable context (maintain the result in the security support layer)

h = SipHash(addrd ∣∣ addrcontext ∣∣ d)

▸ Verify the data structure’s integrity at selected verification points
(Utilize a custom VAS LSM to consult the security support layer)

BlueRock supports the following VAS capabilities:

▸ Process credential protection
▸ Privileged inode protection
▸ System-trusted keyring protection

S. Proskurin | BlueRock Security FOSDEM 2025 2

	Motivation & Background
	Status Quo

	Virtualization-assisted Security (VAS)
	Rethinking Linux Kernel Security

	Virtualization-assisted Security (VAS)
	BlueRock Security Architecture

	Virtualization-assisted Security Primitives
	Overview
	Linux Kernel Integrity
	Linux Kernel Integrity: Memory Model
	Linux Kernel Integrity: Challenges in Dynamic Environments

	The Vault
	Subsystem Isolation for the Linux Kernel
	The NOVA GST Spaces Subsystem
	Showing NOVA GST Spaces In Action

	Integrating Vaults into the Linux Kernel
	Harden the Patching and Tracing Facility Against Unauthorized Access

	
	The KPROBES & BPF Conundrum
	Seeking Community Insights

	Final Words | Call for Action
	Appendix
	A1: VAS Architecture
	A2: Data Structure and Context-bound Pointer Integrity

