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Motivation & Background
Status Quo

Problem: The Kernel Self-Protection Paradox

The Linux kernel is responsible for:
▸ Protecting and isolating applications in user space
▸ Protecting itself from unauthorized accesses

(e.g., kernel modules, exploits, BPF programs, etc.)

ring 0

ring 1

ring 2

ring 3

Increasing
privileges

Who protects the Linux kernel from malicious entities
with same privileges?
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Virtualization-assisted Security (VAS)
Rethinking Linux Kernel Security

Idea: Design the Linux kernel with Virtualization-assisted Security in mind

▸ Alleviate the strict separation between the Linux kernel and a VMM
▸ Empower Linux with new capabilities supported by the system’s virtualization extensions
▸ Virtualization extensions become inherent OS building blocks for defense purposes

▸ Equip Linux subsystems with security primitives offered by the VMM
▸ The VMM becomes a resilient security support layer offering holistic security services
▸ Define security policies to protect critical kernel code and data

▸ Strengthen the Linux kernel’s defense against malicious activities
▸ Enhances overall security without replacing OS responsibilities
▸ Detects and prevents unauthorized activities, despite the presence of kernel vulnerabilities
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Virtualization-assisted Security (VAS)
BlueRock Security Architecture

The Security Support Layer

▸ Based on the NOVA µhypervisor
▸ Provides a hypercall interface to

supply VMs with VAS capabilities
▸ Supports 64-bit Intel & Armv8-A

→ The conceptual architecture
is hypervisor-agnostic
(Similarly applicable to Linux KVM)
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Virtualization-assisted Security (VAS)
BlueRock Security Architecture

The Workload VM

▸ Enlightened, VAS-aware
general-purpose Linux kernel

▸ Actively collaborates with the
security support layer

▸ Leverages VAS building blocks to
enhance the security of subsystems

→ Can be a standalone VM
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Virtualization-assisted Security (VAS)
BlueRock Security Architecture

Communication via hypercalls

▸ Policy initialization and initial
state/context sharing

▸ Policy compliance verification

Communication via virtio
▸ Optional event reporting

(process lifecycle, container drift, etc.)
▸ Focus on user space processes and

container events

→ Policy violations trigger
fault injections into the Workload VM
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Virtualization-assisted Security (VAS)
BlueRock Security Architecture
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Virtualization-assisted Security (VAS)
BlueRock Security Architecture

The Control Plane VM (optional)

▸ Highly stripped-down,
VAS-aware Linux kernel

▸ Decouples system monitoring
and policy decision points

▸ Configures OPA-based policies
▸ Receives security events via virtio

from the Workload VM and VMM

→ A compromised workload VM
cannot easily evade monitoring
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Virtualization-assisted Security Primitives
Overview

The security support layer implements VAS primitives

▸ Linux kernel integrity targetting .text and .rodata
▸ Prevents unauthorized modification of the Linux kernel, modules, and BPF programs
▸ Safeguards the VDSO, idt_table, sys_call_table, etc.

▸ Selective data structure and pointer integrity
▸ Global data structures, including core_pattern, modprobe_path, etc.
▸ Process credentials, privileged inodes, system-trusted keyrings, fops, etc.

▸ Further security features for the Linux kernel:
▸ Control register value locking, SELinux policy protection, driver signature enforcement,
▸ Read-only file protection, kernel patching mediation, etc.
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Virtualization-assisted Security Primitives
Linux Kernel Integrity
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The Linux kernel controls how and which memory regions are to be protected
▸ The Workload VM uses hypercalls to register memory regions in the VMM

▸ This applies to static kernel segments, as well as dynamically loaded code
▸ Combine the Linux kernel’s mm with Second-Level Address Translation (SLAT)

▸ Grant access permissions exclusively to registered memory regions
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Virtualization-assisted Security Primitives
Linux Kernel Integrity
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Linux kernel integrity allows to identify unauthorized supervisor executions
▸ Detect any supervisor execution of non-registered kernel memory

▸ This is efficiently possible with hardware support (Intel MBEC / Arm PXN)
▸ Eliminate unauthorized code injections into the kernel
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Virtualization-assisted Security Primitives
Linux Kernel Integrity: Memory Model

GPA to MPA
2nd level address translation

VMM

Machine-physical addresses (MPA)

Integrity::CREATE

GPA: 0xCAFED000
Size: 4096
Perm: (r-x)

TRANSIENT: true
MUTABLE: false

Owner: LKM

Integrity::REMOVE

GPA: 0xCAFED000
Size: 4096

Owner: LKM

Integrity::CREATE

GPA: 0xD00D0000
Size: 4096
Perm: (rw-)

TRANSIENT: false
MUTABLE: true

Owner: Kernel

Integrity::UPDATE

GPA: 0xD00D0000
Size: 4096
Perm: (r--)

Owner: Kernel

Each registered memory region has an associated type and flags

▸ Memory types: CODE, CODE_PATCHABLE, DATA, DATA_READ_ONLY, etc.
▸ Hypervisor- and hardware-independent memory types
▸ Translate into hardware-defined memory permissions

▸ Memory flags: TRANSIENT and MUTABLE
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Virtualization-assisted Security Primitives
Linux Kernel Integrity: Memory Model
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The TRANSIENT flag distinguishes between static and dynamic memory regions
▸ Transient memory regions are dynamic and can be removed

▸ E.g., .init.text sections, kernel modules, and BPF programs
▸ Non-transient memory regions are static and cannot be unmapped

▸ Static memory regions that do not change in benign contexts
▸ E.g., .text and .rodata
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Virtualization-assisted Security Primitives
Linux Kernel Integrity: Memory Model
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Virtualization-assisted Security Primitives
Linux Kernel Integrity: Memory Model
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The MUTABLE flag allows memory regions to update their memory type
▸ Mutable memory regions allow only more-restrictive updates of their memory types

▸ E.g. the .data..ro_after_init section changes its memory type: DATA to DATA_READ_ONLY
▸ Immutable memory regions lock-down their contents

▸ Once the security permissions are applied, they cannot be undone
▸ Highly-constrained environments can lock-down the entire memory map

S. Proskurin | BlueRock Security FOSDEM 2025 7



Virtualization-assisted Security Primitives
Linux Kernel Integrity: Memory Model
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Virtualization-assisted Security Primitives
Linux Kernel Integrity: Challenges in Dynamic Environments

The Linux kernel is highly dynamic and heavily relies on run-time patching
▸ Alternative instructions, jump labels, static keys, static calls, tracepoints

▸ Optimize performance by replacing instructions, avoiding indirect jumps, etc.
▸ Enable kernel features by toggling rarely-used conditional code paths
▸ Attach probes/functions to statically (or dynamically) defined hooks

Attackers can abuse the patching facility to take over the kernel
▸ Attackers can reuse patching-related code gadgets
▸ Attackers can compromise patching-related data structures to

▸ Arbitrarily write to the kernel code segment, despite CFI
▸ Disarm security monitors (in part without having to change the code segment)

→ Challenge: How to reliably distinguish legitimate from malicious changes?
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Virtualization-assisted Security Primitives
Linux Kernel Integrity: Challenges in Dynamic Environments

To thwart attacks abusing the patching facility we must:

(i) Ensure that the patching facility is always called from a benign context
(ii) Maintain integrity of patching-related data structures

Issue: While we can address (i) with CFI, (ii) remains an open problem!

Idea: Leverage Virtualization-assisted Security to achieve (i) and (ii)!
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The Vault
Subsystem Isolation for the Linux Kernel

The Vault is a general-purpose security primitive to isolate subsystems

▸ Utilize hardware virtualization to define Vaults in kernel space
▸ Encapsulate and isolate sensitive code and data in dedicated sections in the Vault
▸ Empower Linux to shift entire subsystems into Vaults
▸ Partition and isolate Vault-protected subsystems from each other / the kernel

▸ The Linux kernel must not directly access arbitrary memory inside the Vault
▸ Unauthorized accesses trap into the security support layer
▸ Govern Vault transitions through designated transit points
▸ Maintain sensitive subsystem-related data exclusively inside the Vault

→ Attackers cannot divert control-flow to reuse code or alter sensitive data in the Vault
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The Vault
The NOVA GST Spaces Subsystem

Guest-physical
memory

Original View

Guest-physical
memory

2nd level
address translation

Machine-physical
memory

2nd level
address translation

(--x)

(rwx)
GPA MPA

Typically, a VMM uses one set of second level address translation tables (SLAT)
▸ Defines the guest’s global view on the physical memory

→ Changes in the global view are perceived by all vCPUs
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The Vault
The NOVA GST Spaces Subsystem

Guest-physical
memory

Original View

Guest-physical
memory

Alternative View

2nd level
address translation

Machine-physical
memory

2nd level
address translation

(--x)(rwx)
GPAGPA MPA MPA

Introducing the NOVA GST Spaces subsystem
▸ Maintains different views on the guest’s physical memory
▸ Allocates and assigns different memory views to vCPUs

→ Switch views instead of relaxing permissions in a global view!
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The Vault
Showing NOVA GST Spaces In Action

kernel view vault[1] vault[n]

(r--)

(---)

(---)
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Leverage SLAT tables to configure multiple disjoint guest-physical memory views
▸ Only a single guest-physical memory view can be active at a given time
→ Propagate restrictive permissions of each Vault across all available memory views
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The Vault
Showing NOVA GST Spaces In Action

kernel view vault[1]
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One Vault requires 2 memory views (restricted and relaxed view)
▸ The restricted kernel view unifies memory restrictions of all Vaults

▸ Configured as the default view on all vCPUs
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The Vault
Showing NOVA GST Spaces In Action
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For n Vaults, we define n + 1 views on the guest-physical memory
▸ Each {vault[i] ∣ i ∈ {1, ..., n}}

▸ Relaxes the permissions of sensitive memory in Vault i
▸ Restricts access to memory regions belonging to the kernel and Vaults ≠ i
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Integrating Vaults into the Linux Kernel
Harden the Patching and Tracing Facility Against Unauthorized Access
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Vault’s API allows to partition the Linux kernel

▸ Move (patching |tracing)-related code and data
into designated sections within the vault

▸ Define authorized Vault entry and exit points

▸ Communicate locations of the Vault’s sections
and transition points to the VMM at boot time

S. Proskurin | BlueRock Security FOSDEM 2025 13
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Key requirements for secure patching

1. Code outside the vault must not be able
to reuse patching-related code gadgets

2. Only code within the Vault can access
sensitive data structures
▸ struct alt_instr, struct jump_entry,
▸ struct tracepoint, etc.

3. Only code within the Vault is authorized to
instruct the VMM to patch kernel code
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Enforce isolation via NOVA GST Spaces

▸ The kernel view restricts access to the
Vault-protected code and data

▸ The Vault view defines permissions of
the isolated sections inside the vault

▸ NOVA Spaces govern Vault transitions
▸ Switching the memory view allows

to enter/exit the Vault

→ Technology not bound to NOVA
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Vault entries at designated locations

▸ Authorized entry points
▸ Define the Vault’s interface
▸ Annotated function entries

(future: leverage objtool)

▸ The Vault can be entered only by
executing trusted entry points
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Vault entries at designated locations

▸ Authorized entry points
▸ Define the Vault’s interface
▸ Annotated function entries

(future: leverage objtool)

▸ The Vault can be entered only by
executing trusted entry points
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Temporary Vault exits and returns

▸ Vault exits due to external functions
▸ Static return points:

identified via objtool
▸ Passed to the VMM during early boot

▸ Vault exits due to interrupts
▸ Dynamic return points:

extracted from the stack

▸ Authorized return conditions

▸ The Vault was legitimately opened
▸ The return address matches an

authorized return point
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The end of the Vault’s lifecycle

▸ The Vault closes when it reaches its
exit point
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The end of the Vault’s lifecycle

▸ The Vault closes when it reaches its
exit point

Wait, what about KPROBES?
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The KPROBES & BPF Conundrum
Seeking Community Insights

KPROBES & BPF progs serve as foundation for tracing and security frameworks

▸ Allows placing hooks at (almost) any point in the kernel
▸ Enables comprehensive introspection of kernel behavior

→ Ideal for debugging, profiling, and generating security events

Problem: Dangerous in the wrong hands

▸ KPROBES are not bound by namespaces
▸ Potential for leaking data among different execution contexts

▸ KPROBES-attached BPF programs are frequently deployed without being signed
▸ Approaches for signing BPF bytecode have been presented
▸ No definitive solution exists, just yet

(remaining challenges include relocations (CO-RE), or compiled BPF bytecode)
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The KPROBES & BPF Conundrum
Seeking Community Insights

Could VAS assist in limiting the attack surface of KPROBES & BPF progs?

▸ Move the KPROBE facility into a Vault?
→ Remove patching gadgets from the Linux kernel!

▸ Move the BPF JIT compiler into a Vault?
→ Thwart write attempts from other CPUs to pages holding the BPF program at compile-time

▸ Isolate BPF programs from sensitive contexts?
→ Disallow using BPF for exploit payloads

Feel free to reach out, we are open for feedback and collaboration!
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Final Words | Call for Action

▸ Engage with the Linux community
▸ BlueRock’s VAS Linux kernel 1 and NOVA 2 are open source
▸ Prepare patches to start getting parts of our code base into the Linux mainline

▸ Virtualization-assisted Security receives increasing attention from the industry
▸ Microsoft (L)VBS, Samsung Knox RKP, Huawei Security Hypervisor, etc.
▸ We are in need for a common, hypervisor-agnostic hypercall API for the Linux kernel

▸ Virtualization-assisted security has not been explored to its full extent
▸ Protections around KPROBES & BPF programs
▸ We are open for feedback!

1VAS Linux kernel: https://github.com/bedrocksystems/linux-bhv-patches
2NOVA µhypervisor: https://github.com/udosteinberg/NOVA
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Thank You
# sergej@bluerock.io



A1: VAS Architecture
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A2: Data Structure and Context-bound Pointer Integrity

Building blocks to protect security-critical data structures

▸ Leverage the invariants of the data structure’s (d) life-cycle to protect their integrity
▸ Bind d to its unique and immutable context (maintain the result in the security support layer)

h = SipHash(addrd ∣∣ addrcontext ∣∣ d)

▸ Verify the data structure’s integrity at selected verification points
(Utilize a custom VAS LSM to consult the security support layer)

BlueRock supports the following VAS capabilities:

▸ Process credential protection
▸ Privileged inode protection
▸ System-trusted keyring protection
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