
Monitoring Security Operations
with JDK Flight Recorder Events

Seán Coffey, Oracle

FOSDEM 2025

Copyright © 2025, Oracle and/or its affiliates

JDK Flight Recorder (JFR) Overview

• Low cost monitoring and profiling framework embedded directly in the JVM

• Production use. Typical 1% overhead

• Events form the building blocks of the data output. Captured to .jfr file

• Traditionally used for JVM, low level monitoring:

Memory, GC, threads, locks, etc.

• New events added to help monitor JDK usage at the security and core

library API level

Copyright © 2025, Oracle and/or its affiliates

Launching JFR

• Flexible options for capturing JFR data:

• Via command line. e.g. : -XX:StartFlightRecording=dumponexit=true MyApp

Copyright © 2025, Oracle and/or its affiliates

Launching JFR

• Flexible options for capturing JFR data:

• Via command line. e.g. : -XX:StartFlightRecording=dumponexit MyApp

• Via jcmd : e.g. jcmd <pid> JFR.start

Copyright © 2025, Oracle and/or its affiliates

Launching JFR

• Flexible options for capturing JFR data:

• Via command line. e.g. : -XX:StartFlightRecording=dumponexit MyApp

• Via jcmd : e.g. jcmd <pid> JFR.start

• Java Mission Control (JMC)

Copyright © 2025, Oracle and/or its affiliates

JFR Events targeting JDK core libraries

• More events introduced to give visibility of core library level usage

• Examples:

Event Name Introduced Description

jdk.Deserialization JDK 17 Record deserialization of objects

jdk.ProcessStart JDK 15 Record details of processes started via
ProcessBuilder

jdk.VirtualThreadStart
jdk.VirtualThreadEnd

JDK 19 Indicate when a virtual thread starts and ends

jdk.Shutdown JDK 11 Capture details of code calling System.exit

jdk.InitialEnvironmentVariable - Details of all JVM environment variables

Security/Crypto events JDK 12+ …

Copyright © 2025, Oracle and/or its affiliates

Motivation for new JFR Crypto Events

• Monitor security configuration and actions of Java runtime

• Is your environment safe ?

• Allow monitoring of application code via remote attach mechanism

• Determine impact of JDK Cryptographic Roadmap changes on applications

• https://www.java.com/en/jre-jdk-cryptoroadmap.html

• Binary data to allow efficient queries on complex stacks

Copyright © 2025, Oracle and/or its affiliates

https://www.java.com/en/jre-jdk-cryptoroadmap.html

JFR Crypto Events

Event Name Introduced Enabled by Default ?

jdk.SecurityPropertyModification JDK 12 No

jdk.TLSHandshake JDK 12 No

jdk.X509Certificate JDK 12 No

jdk.X509Validation JDK 12 No

jdk.InitialSecurityProperty JDK 20 Yes

jdk.SecurityProviderService JDK 20 No

Copyright © 2025, Oracle and/or its affiliates

Enabling JFR Crypto Events

• Default configuration file at $JDK/lib/jfr/default.jfc

• Extra profiling: $JDK/lib/jfr/profile.jfc

• Specify custom configuration file via start up arguments. E.g. :

• -XX:StartFlightRecording=filename=/home/demo.jfr,settings=/home/verbose.jfc

Copyright © 2025, Oracle and/or its affiliates

Enabling JFR Crypto Events

• Default configuration file at $JDK/lib/jfr/default.jfc

• Extra profiling: $JDK/lib/jfr/profile.jfc

• Specify custom configuration file via start up arguments. E.g. :

• -XX:StartFlightRecording=filename=/home/demo.jfr,settings=/home/verbose.jfc

Copyright © 2025, Oracle and/or its affiliates

<event name="jdk.SecurityProviderService">

<setting name="enabled">false</setting>

<setting name="stackTrace">true</setting>

</event>

Enabling JFR Crypto Events

• Default configuration file at $JDK/lib/jfr/default.jfc

• Extra profiling: $JDK/lib/jfr/profile.jfc

• Specify custom configuration file via start up arguments. E.g. :

• -XX:StartFlightRecording=filename=/home/demo.jfr,settings=/home/verbose.jfc

Copyright © 2025, Oracle and/or its affiliates

<event name="jdk.SecurityProviderService">

<setting name="enabled">false</setting>

<setting name="stackTrace">true</setting>

</event>

jdk.SecurityPropertyModification

• Records details of each Security.setProperty(String, String) call

Copyright © 2025, Oracle and/or its affiliates

jdk.TLSHandshake

• Records details of each TLS handshake from JSSE provider

Copyright © 2025, Oracle and/or its affiliates

jdk.X509Certificate

• Records details of each X509 certificate generated

Copyright © 2025, Oracle and/or its affiliates

jdk.X509Validation

• Records details relating to chain of trust for successful CertPath operations

Copyright © 2025, Oracle and/or its affiliates

jdk.InitialSecurityProperty

• Records details of all security properties at JVM initialize phase

Copyright © 2025, Oracle and/or its affiliates

jdk.SecurityProviderService

• Records details relating to every crypto request made to the JCE framework

Copyright © 2025, Oracle and/or its affiliates

jdk.SecurityProviderService

Copyright © 2025, Oracle and/or its affiliates

jdk.SecurityProviderService (group by)

Copyright © 2025, Oracle and/or its affiliates

jdk.SecurityProviderService

Copyright © 2025, Oracle and/or its affiliates

JFR Event use cases

• https://www.java.com/en/jre-jdk-cryptoroadmap.html

Copyright © 2025, Oracle and/or its affiliates

JFR Event use cases

• https://www.java.com/en/jre-jdk-cryptoroadmap.html

jdk.TLSHandshake

Copyright © 2025, Oracle and/or its affiliates

JFR Event use cases

• https://www.java.com/en/jre-jdk-cryptoroadmap.html

jdk.TLSHandshake

jdk.X509Certificate

Copyright © 2025, Oracle and/or its affiliates

JFR Event use cases

• https://www.java.com/en/jre-jdk-cryptoroadmap.html

jdk.TLSHandshake

jdk.X509Certificate

jdk.TLSHandshake

Copyright © 2025, Oracle and/or its affiliates

More complex case study:
Upgrading the default PKCS12 MAC algorithm

Copyright © 2025, Oracle and/or its affiliates

More complex case study:
Upgrading the default PKCS12 MAC algorithm

jdk.SecurityProviderService

Copyright © 2025, Oracle and/or its affiliates

PKCS12 MAC algorithm analysis

Copyright © 2025, Oracle and/or its affiliates

PKCS12 MAC algorithm analysis

Copyright © 2025, Oracle and/or its affiliates

PKCS12 MAC algorithm analysis

Copyright © 2025, Oracle and/or its affiliates

PKCS12 MAC algorithm analysis

Copyright © 2025, Oracle and/or its affiliates

PKCS12 MAC algorithm analysis

Copyright © 2025, Oracle and/or its affiliates

Oracle Java Management Service (JMS)

• Observe and manage JDK deployments

• Crypto roadmap impact analysis

• Help keep your applications secure by identifying weak cryptography usage

• Analysis using JFR events to detect if any of the managed Java instances

need modification due to changes on the JDK Cryptographic Roadmap

Copyright © 2025, Oracle and/or its affiliates

• Thank you

• security-dev@openjdk.org

Copyright © 2025, Oracle and/or its affiliates

Q & A

	Slide 1: Monitoring Security Operations with JDK Flight Recorder Events
	Slide 2: JDK Flight Recorder (JFR) Overview
	Slide 3: Launching JFR
	Slide 4: Launching JFR
	Slide 5: Launching JFR
	Slide 6: JFR Events targeting JDK core libraries
	Slide 7: Motivation for new JFR Crypto Events
	Slide 8: JFR Crypto Events
	Slide 9: Enabling JFR Crypto Events
	Slide 10: Enabling JFR Crypto Events
	Slide 11: Enabling JFR Crypto Events
	Slide 12: jdk.SecurityPropertyModification
	Slide 13: jdk.TLSHandshake
	Slide 14: jdk.X509Certificate
	Slide 15: jdk.X509Validation
	Slide 16: jdk.InitialSecurityProperty
	Slide 17: jdk.SecurityProviderService
	Slide 18: jdk.SecurityProviderService
	Slide 19: jdk.SecurityProviderService (group by)
	Slide 20: jdk.SecurityProviderService
	Slide 21: JFR Event use cases
	Slide 22: JFR Event use cases
	Slide 23: JFR Event use cases
	Slide 24: JFR Event use cases
	Slide 25: More complex case study: Upgrading the default PKCS12 MAC algorithm
	Slide 26: More complex case study: Upgrading the default PKCS12 MAC algorithm
	Slide 27: PKCS12 MAC algorithm analysis
	Slide 28: PKCS12 MAC algorithm analysis
	Slide 29: PKCS12 MAC algorithm analysis
	Slide 30: PKCS12 MAC algorithm analysis
	Slide 31: PKCS12 MAC algorithm analysis
	Slide 32: Oracle Java Management Service (JMS)
	Slide 33: Q & A

