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JDK Flight Recorder (JFR) Overview

• Low cost monitoring and profiling framework embedded directly in the JVM

• Production use. Typical 1% overhead

• Events form the building blocks of the data output. Captured to .jfr file

• Traditionally used for JVM, low level monitoring:

Memory, GC, threads, locks, etc.

• New events added to help monitor JDK usage at the security and core 

library API level
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Launching JFR

• Flexible options for capturing JFR data:

• Via command line. e.g. : -XX:StartFlightRecording=dumponexit=true MyApp
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Launching JFR

• Flexible options for capturing JFR data:

• Via command line. e.g. : -XX:StartFlightRecording=dumponexit MyApp

• Via jcmd : e.g. jcmd <pid> JFR.start

• Java Mission Control (JMC)
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JFR Events targeting JDK core libraries

• More events introduced to give visibility of core library level usage

• Examples:

Event Name Introduced Description

jdk.Deserialization JDK 17 Record deserialization of objects

jdk.ProcessStart JDK 15 Record details of processes started via 
ProcessBuilder

jdk.VirtualThreadStart
jdk.VirtualThreadEnd

JDK 19 Indicate when a virtual thread starts and ends

jdk.Shutdown JDK 11 Capture details of code calling System.exit

jdk.InitialEnvironmentVariable - Details of all JVM environment variables

Security/Crypto events JDK 12+ …
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Motivation for new JFR Crypto Events

• Monitor security configuration and actions of Java runtime

• Is your environment safe ?

• Allow monitoring of application code via remote attach mechanism

• Determine impact of JDK Cryptographic Roadmap changes on applications 

• https://www.java.com/en/jre-jdk-cryptoroadmap.html

• Binary data to allow efficient queries on complex stacks
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JFR Crypto Events

Event Name Introduced Enabled by Default ?

jdk.SecurityPropertyModification JDK 12 No

jdk.TLSHandshake JDK 12 No

jdk.X509Certificate JDK 12 No

jdk.X509Validation JDK 12 No

jdk.InitialSecurityProperty JDK 20 Yes

jdk.SecurityProviderService JDK 20 No
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Enabling JFR Crypto Events

• Default configuration file at $JDK/lib/jfr/default.jfc

• Extra profiling: $JDK/lib/jfr/profile.jfc

• Specify custom configuration file via start up arguments. E.g. :

• -XX:StartFlightRecording=filename=/home/demo.jfr,settings=/home/verbose.jfc
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<event name="jdk.SecurityProviderService">

<setting name="enabled">false</setting>

<setting name="stackTrace">true</setting>

</event>
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</event>



jdk.SecurityPropertyModification

• Records details of each Security.setProperty(String, String) call
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jdk.TLSHandshake

• Records details of each TLS handshake from JSSE provider
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jdk.X509Certificate

• Records details of each X509 certificate generated
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jdk.X509Validation

• Records details relating to chain of trust for successful CertPath operations
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jdk.InitialSecurityProperty

• Records details of all security properties at JVM initialize phase
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jdk.SecurityProviderService

• Records details relating to every crypto request made to the JCE framework
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jdk.SecurityProviderService
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jdk.SecurityProviderService (group by)
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jdk.SecurityProviderService
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JFR Event use cases

• https://www.java.com/en/jre-jdk-cryptoroadmap.html
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JFR Event use cases

• https://www.java.com/en/jre-jdk-cryptoroadmap.html

jdk.TLSHandshake

jdk.X509Certificate

jdk.TLSHandshake
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More complex case study:
Upgrading the default PKCS12 MAC algorithm
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More complex case study:
Upgrading the default PKCS12 MAC algorithm

jdk.SecurityProviderService
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PKCS12 MAC algorithm analysis
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PKCS12 MAC algorithm analysis
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PKCS12 MAC algorithm analysis
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PKCS12 MAC algorithm analysis
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Oracle Java Management Service (JMS)

• Observe and manage JDK deployments

• Crypto roadmap impact analysis

• Help keep your applications secure by identifying weak cryptography usage

• Analysis using JFR events to detect if any of the managed Java instances 

need modification due to changes on the JDK Cryptographic Roadmap
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• Thank you

• security-dev@openjdk.org

Copyright © 2025, Oracle and/or its affiliates

Q & A
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