
Kintsugi
Emilie Ma & Martin Kleppmann
Slides available at emilie.ma/fosdem2025 ∘ hello@emilie.ma

Decentralized E2EE Key Recovery

https://emilie.ma/fosdem25
mailto:hello@emilie.ma

I lost my phone. What now?
� with non-E2EE apps: log in with the same username/passwor�
� with E2EE apps: server doesn’t store a copy of ke�

� recovery PI�
� recovery contac�
� recovery code�
� recovery file�
� and more...

Existing schemes have tradeoffs.

Recovery PIN�
� e.g. Signal SVR,

WhatsAp�
� Requires secure

hardware for rate-
limiting guesses
(otherwise, brute-
forceable)

Recovery Contact�
� e.g. Apple iCloud,

PreVei�
� Have to totally trust

contact�
� Usually can collude to

gain access to your
account

Recovery Codes/
File�

� e.g. LastPass, Bitcoi�
� Protects against

brute-force/guessing
because high-entropy,
but requires keeping a
copy

Centralization doesn’t always work.
� some applications require metadata privacy (e.g. Tor�
� others may have infrastructure shut down (e.g. sanctioned activists�
� services may lack/want to avoid central authority grou�
� infrastructure can be cost-prohibitiv�
� other issues: single point of trust, infra availability

Introducing Kintsugi!
� decentralized key recovery protocol based on P2P networ�

� recovery servers + contacts’ devices + a mi�
� recovery by contacting some threshold t+1 of recovery node�

� each hold share of secret for user to recover ke�
� users can update recovery nodes at any tim�
� protects against brute-forcing low-entropy passwor�
� also protects against colluding, “honest-but-curious” recovery nodes

Demo

 + +
github.com/kewbish/kintsugi

https://github.com/kewbish/kintsugi

What’s an OPRF?

User

� Oblivious Pseudo-Random Functio�
� user keeps a secret value, �
� server keeps a secret value, �
� user learns the result F(U, S) (but not S), server learns nothing

What’s an OPRF?

User

� Oblivious Pseudo-Random Functio�
� user keeps a secret value, �
� server keeps a secret value, �
� user learns the result F(U, S) (but not S), server learns nothing

What’s an OPRF?

User

� Oblivious Pseudo-Random Functio�
� user keeps a secret value, �
� server keeps a secret value, �
� user learns the result F(U, S) (but not S), server learns nothing

Server

What’s an OPRF?

User

� Oblivious Pseudo-Random Functio�
� user keeps a secret value, �
� server keeps a secret value, �
� user learns the result F(U, S) (but not S), server learns nothing

Server User

Shamir Secret Sharing
� have a secret S that you want to split up into share�
� require at least t+1 shares to reconstruct S

� each of these points is a shar�
� can “connect the dots” with enough

shares to find the unique function
(Lagrange interpolation�

� then can compute f(0) = S

f(x) = S + ax + bx2 + ... + zxt

x

y

(0,S)

Protocols Used
� combination of�

� threshold OPRFs (TOPPSS by Jarecki et al.�
� imagine an OPRF but with multiple “servers”, where you

need to reach at least t+�
� dynamic, proactive secret sharing (Honey Badger by Das et al.�

� recovery nodes can be changed on deman�
� imagine SSS but you can exchange nodes’ shares while

keeping s the same

https://eprint.iacr.org/2017/363
https://eprint.iacr.org/2022/971

Registration Flow

User

Registration Flow

User

Registration Flow

User

Recovery Node 1

Recovery Node i

Recovery Node t+1

Registration Flow

User

Recovery Node 1

Recovery Node i

Recovery Node t+1

User

Registration Flow

User

Recovery Node 1

Recovery Node i

Recovery Node t+1

User Encrypted Envelope

Registration Flow

User

Recovery Node 1

Recovery Node i

Recovery Node t+1

User Encrypted Envelope Recovery Node i

Recovery Node 1

Recovery Node t+1

Recovery Flow

User

Recovery Node 1

Recovery Node i

Recovery Node t+1

Recovery Flow

User

Recovery Node 1

Recovery Node i

Recovery Node t+1

User

Recovery Flow

User

Recovery Node 1

Recovery Node i

Recovery Node t+1

User Decrypted Envelope
w/ Recovery Key

Recovery Flow

User

Recovery Node 1

Recovery Node i

Recovery Node t+1

Recovery Node 1

Recovery Node i

Recovery Node t+1

User

Recovery Node Update Flow

User

Recovery Node 1

Recovery Node i

Recovery Node t+1

Recovery Node Update Flow

User

Recovery Node 1

Recovery Node i

Recovery Node t+1

Recovery Node 1’

Recovery Node i’

Recovery Node t+1’

Recovery Node Update Flow

User

Recovery Node 1

Recovery Node i

Recovery Node t+1

Recovery Node 1’

Recovery Node i’

Recovery Node t+1’

https://emilie.ma/blog/posts/241229/

TL;DR: Kintsugi provides
decentralized secure recovery.

� improvements on existing methods�
� decentralized�
� no expensive hardware require�
� works in the case of device los�
� protects against brute-force + colluding recovery node�

� currently: initial implementation finishe�
� next: integrating w/ Ink & Switch Beehive project, polishing

Slides available at emilie.ma/fosdem2025 ∘ hello@emilie.ma

https://github.com/kewbish/kintsugi
https://www.inkandswitch.com/beehive/notebook/
https://emilie.ma/fosdem25
mailto:hello@emilie.ma

