Decentralized F2EFE Key Recovery

Emilie Ma & Martin Kleppmann

Slides available at emilie.ma/fosdem2025 - hello@emilie.ma

https://emilie.ma/fosdem25
mailto:hello@emilie.ma

[lost my phone. What now?

 with non-E2EE apps: log in with the same username/password
 with E2EE apps: server doesn’t store a copy of key

e recovery PIN

e recovery contact

» recovery codes

 recovery files

« and more...

Existing schemes have tradeofls.

Recovery PINs Recovery Contacts Recovery Codes/
 e.g.Signal SVR, » e.g.AppleiCloud, Files
WhatsApp PreVeil . e.g. LastPass, Bitcoin

» Requires secure
hardware for rate-
limiting guesses
(otherwise, brute-
forceable)

» Have to totally trust
contacts

 Usually can collude to
galn access to your
account

» Protects against
brute-force/guessing
because high-entropy,
but requires keeping a

copy

Centralization doesn’t always work.

» some applications require metadata privacy (e.g. Tor)

» others may have infrastructure shut down (e.g. sanctioned activists)
» services may lack/want to avoid central authority group

o infrastructure can be cost-prohibitive

» otherissues: single point of trust, infra availability

Introducing Kintsugi!

 decentralized key recovery protocol based on P2P network
» recovery servers + contacts’ devices + a mix
o recovery by contacting some threshold t+1 of recovery nodes
 each hold share of secret for user to recover key
e users can update recovery nodes at any time
o protects against brute-forcing low-entropy password
» also protects against colluding, “honest-but-curious” recovery nodes

Demo

Welcome to Kintsugi!

Enter the addresses of three or more trusted recovery nodes.

. bootstrap0 X

) bootstrap1 X

bootstrap2 X

. bootstrap3 X

. bootstrap4 X
Threshold

3
Add recovery node Register

- AT
g (1]
(W |
i A\ 4

github.com/kewbish/kintsugi

https://github.com/kewbish/kintsugi

What’s an OPRF?

 Oblivious Pseudo-Random Function
o user keeps a secret value, U

« server keeps a secretvalue, S
o user learns the result F(U, S) (but not S), server learns nothing

i 8

User

What’s an OPRF?

 Oblivious Pseudo-Random Function
o user keeps a secret value, U

« server keeps a secretvalue, S
o user learns the result F(U, S) (but not S), server learns nothing

What’s an OPRF?

 Oblivious Pseudo-Random Function
o user keeps a secret value, U

« server keeps a secretvalue, S
o user learns the result F(U, S) (but not S), server learns nothing

What’s an OPRF?

 Oblivious Pseudo-Random Function
o user keeps a secret value, U

« server keeps a secretvalue, S
o user learns the result F(U, S) (but not S), server learns nothing

Shamir Secret Sharing

» have a secret S that you want to split up into shares
 require at least t+1 shares to reconstruct S

y
fx)=S+ax+bx2+..+zxt ¢ e€ach of these pointsis a share

e can “connect the dots” with enough
shares to find the unique function
(Lagrange interpolation)

 then can computef(0)=S

Protocols Used

» combination of:
 threshold OPRFs (TOPPSS by Jarecki et al.)
 imagine an OPRF but with multiple “servers”, where you

need to reach at least t+1
» dynamic, proactive secret sharing (Honey Badger by Das et al.)

 recovery nodes can be changed on demand
 Imagine SSS but you can exchange nodes’ shares while
keeping s the same

https://eprint.iacr.org/2017/363
https://eprint.iacr.org/2022/971

Registration Flow

Registration Flow

Registration Flow

Recovery Node t+1

Registration Flow

Recovery No

dei/\ User

Recovery Node t+1

Registration Flow

Recovery Node i

@

Recovery Node t+1

Registration Flow

O

Recovery Node 1
o — WXl o oWe' W
Encrypted Envelope Recovery Node i

Recovery Node t+1 Recovery Node t+1

Recovery Flow

@

Recovery Node 1

@

Recovery Node i

@

Recovery Node t+1

Recovery Flow

Recovery Node 1

0,0

User Recovery Node i User

%

Recovery Node t+1

Recovery Flow

Decrypted Envelope
w/ Recovery Key

Recovery Node t+1

Recovery Flow

@ — o
Recovery Nocﬁ

@ —— X«

User Recovery Node i User

F o Y

%@

Recovery Node t+1 Recovery Node t+1

Recovery Node Update Flow

W

H @2@ P

Recovery Node 1

Recovery Node t+1

Recovery Node Update Flow

<

Recovery Node 1’

HO%F _
Recovery Node / Recovery Node /’

s

Recovery Node t+1 Recovery Node t+1’

@

Recovery Node Update Flow

~ <

| Recovery Node 1 Recovery Node 1’

Ay

Recovery Node j’

Recovery Node i

0,0 O
s s

Recovery Node t+1 Recovery Node t+1’

https://emilie.ma/blog/posts/241229/

TL:DR: Kintsugi provides
decentralized secure recovery.

» Improvements on existing methods:

 decentralized!

» NO expensive hardware required

» works in the case of device loss

» protects against brute-force + colluding recovery nodes
o currently: initial implementation finished

» next: integrating w/ Ink & Switch Beehive project, polishing

Slides available at emilie.ma/fosdem2025 - hello@emilie.ma

https://github.com/kewbish/kintsugi
https://www.inkandswitch.com/beehive/notebook/
https://emilie.ma/fosdem25
mailto:hello@emilie.ma

