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About me
● Linux kernel developer for the Qualcomm Landing Team at Linaro
● 15 years of embedded linux experience
● Maintainer of the GPIO subsystem
● Author and maintainer of libgpiod
● Open-source contributor to many other projects
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is the software engine
of the arm Ecosystem
Linaro empowers rapid product deployment
within the dynamic arm Ecosystem.

Linaro has enabled trust, quality
and collaboration since 2010

Our cutting-edge solutions, services and collaborative platforms facilitate
the swift development, testing, and delivery of arm-based innovations,
enabling businesses to stay ahead in today’s competitive technology
landscape.

Linaro fosters an environment of collaboration, standardization and
optimization among businesses and open source ecosystems to
accelerate the deployment of arm-based products and technologies
along with representing a pivotal role in open source discovery and
adoption.

Automotive, Testing, Linux Kernel, Security, Cloud & Edge Computing,
IoT & Embedded, AI, CI/CD, Toolchain, Virtualization
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Bart, why do you hate 
/sys/class/gpio?
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I don’t



6Arm Solutions at Lightspeed

I don’t only hate /sys/class/gpio
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GPIOLIB has a problem with legacy cruft
● Relevant talk:

○ “Compound Interest - Dealing with Two Decades of Technical Debt in Embedded 
Linux”

○ https://www.youtube.com/watch?v=BR41Yg69c9Y
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GPIOLIB has a problem with legacy cruft
● Relevant talk:

○ “Compound Interest - Dealing with Two Decades of Technical Debt in Embedded 
Linux”

○ https://www.youtube.com/watch?v=BR41Yg69c9Y
● The biggest issue is having two intertwined ways of keeping track of GPIOs

○ Modern descriptor-based, two-level (chip, line) hierarchy
○ Legacy global GPIO numberspace

https://www.youtube.com/watch?v=BR41Yg69c9Y
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Why remove global GPIO numberspace?
● Unify the in-kernel GPIO interfaces
● Use the interface which doesn’t allow buggy drivers to claim GPIOs that aren’t theirs
● Drop hardcoded GPIO base
● Don’t depend on predefined magic values for GPIOs (in kernel and user-space)
● Reduce maintenance burden



10Arm Solutions at Lightspeed

What stands in the way?
● Some drivers still don’t use descriptors

○ That’s not a hard problem
○ In-tree drivers can be converted one-by-one
○ We don’t care about breaking out-of-tree drivers
○ It’s just tedious
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What stands in the way?
● Some drivers still don’t use descriptors

○ That’s not a hard problem
○ In-tree drivers can be converted one-by-one
○ We don’t care about breaking out-of-tree drivers
○ It’s just tedious

● /sys/class/gpio is a major user of the legacy in-kernel interface
○ This is a hard problem due to advertised uABI stability
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/sys/class/gpio has issues
● Users rely on brittle shell scripts toggling GPIOs identified by magic numbers
● Implements a rather wonky polling mechanism
● Lacks a lot of features of the character device
● Processes using GPIOs can get in each-other’s way
● The ABI has been inconsistent for 10 years and nobody even noticed
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/sys/class/gpio also some pros too
● Fine-grained permission control using the VFS ops
● Effectively works as an in-kernel GPIO daemon
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Long term goal: Remove 
/sys/class/gpio from 

the kernel ABI
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Prerequisite:
Users must stop using 

it first
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Quick note on 
removing interfaces 

from the kernel
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It’s not without precedent
● sysctl() system call -> removed in linux v5.5
● /dev/kmem -> removed in linux v5.9
● /dev/raw -> removed in linux v5.14
● Some sysfs classes were dropped over the time

○ /sys/class/misc/rtc
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But…
● For most part: if user-space objects to backward incompatible changes, we must not 

remove existing interfaces
● Unless an interface is proven to be harmful
● Which is not the case here :(
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Where are we at?
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Nowhere near :(
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Proposed alternatives
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GPIO character device

/dev/gpiochip0
open()
ioctl()
read()
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Users want simplicity
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libgpiod & gpio-tools
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Users when they realize gpioset 
does not guarantee persistence
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Users want GPIO state 
persistence (like what 

sysfs does)
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gpio-manager
● Relevant talk:

○ “Give Me Back My GPIO Persistence - introducing the libgpiod gpio-manager “
○ https://www.youtube.com/watch?v=tUFcWVwyzQg

● gpio-manager and gpiocli are seeing some adoption
● Users can now do:

○ gpiocli request –output foobar
○ gpioset foobar=active
○ gpioget foobar

https://www.youtube.com/watch?v=tUFcWVwyzQg
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Turns out users just 
don’t want to change 

their programs
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If you still want to use 
/sys/class/gpio…
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… how about moving it 
to user-space?
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/me should really start 
learning rust…
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Python is good 
enough! ¯\_(ツ)_/¯
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Introducing gpiod-sysfs-proxy
● user-space compatibility layer for /sys/class/gpio

○ uses FUSE to create a filesystem compatible with /sys/class/gpio in user-space
○ uses libgpiod to control GPIOs via the character device
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Introducing gpiod-sysfs-proxy
● user-space compatibility layer for /sys/class/gpio

○ uses FUSE to create a filesystem compatible with /sys/class/gpio in user-space
○ uses libgpiod to control GPIOs via the character device

● Get it at:
○ https://github.com/brgl/gpiod-sysfs-proxy
○ https://pypi.org/project/gpiod-sysfs-proxy/

https://github.com/brgl/gpiod-sysfs-proxy
https://pypi.org/project/gpiod-sysfs-proxy/
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Introducing gpiod-sysfs-proxy
● user-space compatibility layer for /sys/class/gpio

○ uses FUSE to create a filesystem compatible with /sys/class/gpio in user-space
○ uses libgpiod to control GPIOs via the character device

● Get it at:
○ https://github.com/brgl/gpiod-sysfs-proxy
○ https://pypi.org/project/gpiod-sysfs-proxy/

● Caveats:
○ Polling the value attribute works a bit differently due to libfuse limitations
○ No static GPIO base yet (working on it!)

https://github.com/brgl/gpiod-sysfs-proxy
https://pypi.org/project/gpiod-sysfs-proxy/
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Introducing gpiod-sysfs-proxy
● user-space compatibility layer for /sys/class/gpio

○ uses FUSE to create a filesystem compatible with /sys/class/gpio in user-space
○ uses libgpiod to control GPIOs via the character device

● Get it at:
○ https://github.com/brgl/gpiod-sysfs-proxy
○ https://pypi.org/project/gpiod-sysfs-proxy/

● Caveats:
○ Polling the value attribute works a bit differently due to libfuse limitations
○ No static GPIO base yet (working on it!)

● Passes compatibility tests:
○ https://github.com/brgl/gpio-sysfs-compat-tests

https://github.com/brgl/gpiod-sysfs-proxy
https://pypi.org/project/gpiod-sysfs-proxy/
https://github.com/brgl/gpio-sysfs-compat-tests
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gpiod-sysfs-proxy usage
● Install using pip3: pip3 install gpiod-sysfs-proxy
● Mount at the directory of choice: gpiod-sysfs-proxy /sys/class/gpio
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But I don’t have /sys/class/gpio, 
it’s disabled in Kconfig
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gpiod-sysfs-proxy integration
mkdir -p /run/gpio/sys /run/gpio/class/gpio /run/gpio/work

mount -t sysfs sysfs /run/gpio/sys -o nosuid,nodev,noexec

mount -t overlay overlay /sys/class \

    -o upperdir=/run/gpio/class,lowerdir=/run/gpio/sys/class,workdir=/run/gpio/work,nosuid,nodev,noexec,relatime,ro
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gpiod-sysfs-proxy integration
mkdir -p /run/gpio/sys /run/gpio/class/gpio /run/gpio/work

mount -t sysfs sysfs /run/gpio/sys -o nosuid,nodev,noexec

mount -t overlay overlay /sys/class \

    -o upperdir=/run/gpio/class,lowerdir=/run/gpio/sys/class,workdir=/run/gpio/work,nosuid,nodev,noexec,relatime,ro
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What’s next?
● Support static GPIO base numbers in gpiod-sysfs-proxy
● Try to get some traction for it
● Still want to learn that rust…

○ Filesystem based GPIO interface that improves upon the sysfs idea?
■ Would have fine-grained permission control that with D-Bus requires a lot of 

polkit integration and/or using gpio-aggregator
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Summary
● /sys/class/gpio will still be there for a while

○ cannot remove it as long as it has users
● libgpiod offers a bunch of alternatives
● gpiod-sysfs-proxy offers compatibility with /sys/class/gpio implemented in 

user-space with libgpiod
● Converting all kernel drivers to new API will make a stronger case for removal of 

sysfs
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Q & A
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Thank You!
Visit linaro.org

Contact me at:
bartosz.golaszewski@linaro.org


