
1Arm Solutions at Lightspeed

The status of removing /sys/class/gpio and
the global GPIO numberspace from the
kernel
FOSDEM

Brussels, Belgium, 2025

Bartosz Golaszewski
Linaro

2Arm Solutions at Lightspeed

About me
● Linux kernel developer for the Qualcomm Landing Team at Linaro
● 15 years of embedded linux experience
● Maintainer of the GPIO subsystem
● Author and maintainer of libgpiod
● Open-source contributor to many other projects

3Arm Solutions at Lightspeed

is the software engine
of the arm Ecosystem
Linaro empowers rapid product deployment
within the dynamic arm Ecosystem.

Linaro has enabled trust, quality
and collaboration since 2010

Our cutting-edge solutions, services and collaborative platforms facilitate
the swift development, testing, and delivery of arm-based innovations,
enabling businesses to stay ahead in today’s competitive technology
landscape.

Linaro fosters an environment of collaboration, standardization and
optimization among businesses and open source ecosystems to
accelerate the deployment of arm-based products and technologies
along with representing a pivotal role in open source discovery and
adoption.

Automotive, Testing, Linux Kernel, Security, Cloud & Edge Computing,
IoT & Embedded, AI, CI/CD, Toolchain, Virtualization

4Arm Solutions at Lightspeed

Bart, why do you hate
/sys/class/gpio?

5Arm Solutions at Lightspeed

I don’t

6Arm Solutions at Lightspeed

I don’t only hate /sys/class/gpio

7Arm Solutions at Lightspeed

GPIOLIB has a problem with legacy cruft
● Relevant talk:

○ “Compound Interest - Dealing with Two Decades of Technical Debt in Embedded
Linux”

○ https://www.youtube.com/watch?v=BR41Yg69c9Y

8Arm Solutions at Lightspeed

GPIOLIB has a problem with legacy cruft
● Relevant talk:

○ “Compound Interest - Dealing with Two Decades of Technical Debt in Embedded
Linux”

○ https://www.youtube.com/watch?v=BR41Yg69c9Y
● The biggest issue is having two intertwined ways of keeping track of GPIOs

○ Modern descriptor-based, two-level (chip, line) hierarchy
○ Legacy global GPIO numberspace

https://www.youtube.com/watch?v=BR41Yg69c9Y

9Arm Solutions at Lightspeed

Why remove global GPIO numberspace?
● Unify the in-kernel GPIO interfaces
● Use the interface which doesn’t allow buggy drivers to claim GPIOs that aren’t theirs
● Drop hardcoded GPIO base
● Don’t depend on predefined magic values for GPIOs (in kernel and user-space)
● Reduce maintenance burden

10Arm Solutions at Lightspeed

What stands in the way?
● Some drivers still don’t use descriptors

○ That’s not a hard problem
○ In-tree drivers can be converted one-by-one
○ We don’t care about breaking out-of-tree drivers
○ It’s just tedious

11Arm Solutions at Lightspeed

What stands in the way?
● Some drivers still don’t use descriptors

○ That’s not a hard problem
○ In-tree drivers can be converted one-by-one
○ We don’t care about breaking out-of-tree drivers
○ It’s just tedious

● /sys/class/gpio is a major user of the legacy in-kernel interface
○ This is a hard problem due to advertised uABI stability

12Arm Solutions at Lightspeed

/sys/class/gpio has issues
● Users rely on brittle shell scripts toggling GPIOs identified by magic numbers
● Implements a rather wonky polling mechanism
● Lacks a lot of features of the character device
● Processes using GPIOs can get in each-other’s way
● The ABI has been inconsistent for 10 years and nobody even noticed

13Arm Solutions at Lightspeed

/sys/class/gpio also some pros too
● Fine-grained permission control using the VFS ops
● Effectively works as an in-kernel GPIO daemon

14Arm Solutions at Lightspeed

Long term goal: Remove
/sys/class/gpio from

the kernel ABI

15Arm Solutions at Lightspeed

Prerequisite:
Users must stop using

it first

16Arm Solutions at Lightspeed

Quick note on
removing interfaces

from the kernel

17Arm Solutions at Lightspeed

It’s not without precedent
● sysctl() system call -> removed in linux v5.5
● /dev/kmem -> removed in linux v5.9
● /dev/raw -> removed in linux v5.14
● Some sysfs classes were dropped over the time

○ /sys/class/misc/rtc

18Arm Solutions at Lightspeed

But…
● For most part: if user-space objects to backward incompatible changes, we must not

remove existing interfaces
● Unless an interface is proven to be harmful
● Which is not the case here :(

19Arm Solutions at Lightspeed

Where are we at?

20Arm Solutions at Lightspeed

Nowhere near :(

21Arm Solutions at Lightspeed

Proposed alternatives

22Arm Solutions at Lightspeed

GPIO character device

/dev/gpiochip0
open()
ioctl()
read()

23Arm Solutions at Lightspeed

Users want simplicity

24Arm Solutions at Lightspeed

libgpiod & gpio-tools

25Arm Solutions at Lightspeed

Users when they realize gpioset
does not guarantee persistence

26Arm Solutions at Lightspeed

Users want GPIO state
persistence (like what

sysfs does)

27Arm Solutions at Lightspeed

gpio-manager
● Relevant talk:

○ “Give Me Back My GPIO Persistence - introducing the libgpiod gpio-manager “
○ https://www.youtube.com/watch?v=tUFcWVwyzQg

● gpio-manager and gpiocli are seeing some adoption
● Users can now do:

○ gpiocli request –output foobar
○ gpioset foobar=active
○ gpioget foobar

https://www.youtube.com/watch?v=tUFcWVwyzQg

28Arm Solutions at Lightspeed

Turns out users just
don’t want to change

their programs

29Arm Solutions at Lightspeed

If you still want to use
/sys/class/gpio…

30Arm Solutions at Lightspeed

… how about moving it
to user-space?

31Arm Solutions at Lightspeed

/me should really start
learning rust…

32Arm Solutions at Lightspeed

33Arm Solutions at Lightspeed

Python is good
enough! ¯_(ツ)_/¯

34Arm Solutions at Lightspeed

Introducing gpiod-sysfs-proxy
● user-space compatibility layer for /sys/class/gpio

○ uses FUSE to create a filesystem compatible with /sys/class/gpio in user-space
○ uses libgpiod to control GPIOs via the character device

35Arm Solutions at Lightspeed

Introducing gpiod-sysfs-proxy
● user-space compatibility layer for /sys/class/gpio

○ uses FUSE to create a filesystem compatible with /sys/class/gpio in user-space
○ uses libgpiod to control GPIOs via the character device

● Get it at:
○ https://github.com/brgl/gpiod-sysfs-proxy
○ https://pypi.org/project/gpiod-sysfs-proxy/

https://github.com/brgl/gpiod-sysfs-proxy
https://pypi.org/project/gpiod-sysfs-proxy/

36Arm Solutions at Lightspeed

Introducing gpiod-sysfs-proxy
● user-space compatibility layer for /sys/class/gpio

○ uses FUSE to create a filesystem compatible with /sys/class/gpio in user-space
○ uses libgpiod to control GPIOs via the character device

● Get it at:
○ https://github.com/brgl/gpiod-sysfs-proxy
○ https://pypi.org/project/gpiod-sysfs-proxy/

● Caveats:
○ Polling the value attribute works a bit differently due to libfuse limitations
○ No static GPIO base yet (working on it!)

https://github.com/brgl/gpiod-sysfs-proxy
https://pypi.org/project/gpiod-sysfs-proxy/

37Arm Solutions at Lightspeed

Introducing gpiod-sysfs-proxy
● user-space compatibility layer for /sys/class/gpio

○ uses FUSE to create a filesystem compatible with /sys/class/gpio in user-space
○ uses libgpiod to control GPIOs via the character device

● Get it at:
○ https://github.com/brgl/gpiod-sysfs-proxy
○ https://pypi.org/project/gpiod-sysfs-proxy/

● Caveats:
○ Polling the value attribute works a bit differently due to libfuse limitations
○ No static GPIO base yet (working on it!)

● Passes compatibility tests:
○ https://github.com/brgl/gpio-sysfs-compat-tests

https://github.com/brgl/gpiod-sysfs-proxy
https://pypi.org/project/gpiod-sysfs-proxy/
https://github.com/brgl/gpio-sysfs-compat-tests

38Arm Solutions at Lightspeed

gpiod-sysfs-proxy usage
● Install using pip3: pip3 install gpiod-sysfs-proxy
● Mount at the directory of choice: gpiod-sysfs-proxy /sys/class/gpio

39Arm Solutions at Lightspeed

But I don’t have /sys/class/gpio,
it’s disabled in Kconfig

40Arm Solutions at Lightspeed

gpiod-sysfs-proxy integration
mkdir -p /run/gpio/sys /run/gpio/class/gpio /run/gpio/work

mount -t sysfs sysfs /run/gpio/sys -o nosuid,nodev,noexec

mount -t overlay overlay /sys/class \

 -o upperdir=/run/gpio/class,lowerdir=/run/gpio/sys/class,workdir=/run/gpio/work,nosuid,nodev,noexec,relatime,ro

41Arm Solutions at Lightspeed

gpiod-sysfs-proxy integration
mkdir -p /run/gpio/sys /run/gpio/class/gpio /run/gpio/work

mount -t sysfs sysfs /run/gpio/sys -o nosuid,nodev,noexec

mount -t overlay overlay /sys/class \

 -o upperdir=/run/gpio/class,lowerdir=/run/gpio/sys/class,workdir=/run/gpio/work,nosuid,nodev,noexec,relatime,ro

42Arm Solutions at Lightspeed

What’s next?
● Support static GPIO base numbers in gpiod-sysfs-proxy
● Try to get some traction for it
● Still want to learn that rust…

○ Filesystem based GPIO interface that improves upon the sysfs idea?
■ Would have fine-grained permission control that with D-Bus requires a lot of

polkit integration and/or using gpio-aggregator

43Arm Solutions at Lightspeed

Summary
● /sys/class/gpio will still be there for a while

○ cannot remove it as long as it has users
● libgpiod offers a bunch of alternatives
● gpiod-sysfs-proxy offers compatibility with /sys/class/gpio implemented in

user-space with libgpiod
● Converting all kernel drivers to new API will make a stronger case for removal of

sysfs

44Arm Solutions at Lightspeed

Q & A

45Arm Solutions at Lightspeed

Thank You!
Visit linaro.org

Contact me at:
bartosz.golaszewski@linaro.org

