

Building the next generation Cloud Native Database

Benefits and what problems does it solve?

Introduction

Sunny Bains Architect, PingCAP

- Working on database internals since 2001.
- Was MySQL/InnoDB team lead at Oracle. @sunbains (Twitter/X)

Agenda

- Brief history
- Current Architecture
- Serverless Architecture

Trusted by Global Innovation Leaders

3,000 + global adopters use TiDB in production

•	Top Banks in China/Global	Of 中国建设银行 China Construction Bank	5 (日本) 中国 銀行 BANK OF CHINA	WeBank	PINGAN
		SCB ไทยพาณิชย์	UnionPay 钜思	hzbank BANK OF	Finance · Technology
•	Top Fintech in the World	PayPay 🗖	Square 🛞 PI		rpay <mark>Zalo Pay</mark>
•	Global Top Lighthouses	databricks	airbnb Linke	d in Pinter	est 拼多多 ^{拼音实·才便宜}
•	E-commerce & Logistics Lighthouses	S Shopee	<mark>ट्</mark> Flipkart	Yum!	Bolt
		ZTO: Expres	ss STEXPRESS	DELHIVE	ş ninjavan

And 4 out of top 5 Cryptocurrency Exchanges

Data generation trend

A little bit of history [2014]

"It was the best of times, it was the worst of times ..."

- Rapid business and data growth
- Hundreds of TB
- Reshard / Rebalance (at midnight)
- Keep strong consistency when a MySQL node went down
- Explicit sharding (and resharding) was required to scale

We found Spanner (Paper)

PingCAP

But...

- Proprietary, not open-source
- Special hardware is required (TrueTime)
 - We wanted to run it on commodity hardware
- Specialized and proprietary APIs, not standard SQL and wired protocol

TiDB Design Philosophy

• Shared-nothing architecture

- Developers should not be concerned with shard details
- Developers should have the flexibility to control data placement

• Standard SQL

• Execution engine should determine the details of distributed execution

• Distributed Transactions

- Strong transactional consistency guarantees out of the box
- Flexible read consistency policies should be provided

Built-in Highly Available

• Not at the cost of **strong consistency**

TiDB: Reference Architecture

TiKV: Distributed KV Storage [Built in Rust]

TiKV - Data Storage Example

Example to illustrate how TiKV partitions and manages the data

TiDB Region

A Region is TiKV's logical scale unit

- Operations such as load balance, scale-out, scale-in are all based on region
- **Regions** are replicated using the Raft consensus protocol
 - A replicated **region** is called a Raft group
 - **Regions** are spread across the nodes in the cluster
 - A single storage node contains many **Regions**
 - **Regions** are stored on RocksDB, there is one instance of RocksDB per storage node.
 - Rows in a **Region** are ordered

Distributed Transactions in TiDB

- TiDB supports Read-Committed and Snapshot Isolation levels
 - The Snapshot Isolation is mapped to MySQL/InnoDB's Repeatable Read
- TiDB uses an optimized version of the Percolator algorithm for distributed transactions
- A transaction requires a start time stamp and a commit timestamp
 - PD is responsible for handing out these timestamps
 - These timestamps are used in TiDB's MVCC implementation
- Async commit in TiDB
 - The SQL nodes are the Txn Coordinators (TC)
 - The TiKV nodes are the participants
 - Works well when the transaction write set is small and Phase II time dominates
- Supports 1PC Commit Optimization
 - If transaction only updates a non-index column of a record
 - Or, Inserts a record without a secondary index,
 - Only involves a single Region

Challenges Yet To Be Fully Addressed

- How to improve stability at scale?
 - Copying data, LSM compaction may slow down your workloads
 - Provisioning can take time
- How to take scalability to the next level?
 - Exploding data volume, customers asking for 200PB clusters
 - Multiple applications share a single cluster for greater efficiency and lower costs
- How to make it easier and more cost effective for users?
 - Maintenance burden of a distributed system, trade-offs become "knobs"
 - Scale down when the workload reduces

Leverage the Cloud Infrastructure

- Allow a developer to start small and scale to any size
- Better and more varied capabilities e.g., disaggregated storage, use S3
- Elasticity and resilience
- Hide the complexity of a distributed system
- Integrate the database with the capabilities of cloud
- The only cost of a quiescent instance should be storage

Leverage Cloud Storage

Storage Option	Storage Cost	Storage Limit	Durability	Latency	Request Cost
Object Storage (e.g., S3)	Low	Unlimited	High	High	High
Block Storage (e.g., EBS)	High	Limited	Low	Low	None

Best of both worlds

TiDB Serverless Architecture

- Multi-tenant architecture
- Disaggregated storage (new LSM storage engine, replaces RocksDB)
 - Local disk or memory as write through cache
 - Cold data on S3
 - Data shared by row & column store
- Shared resource pool [spot instances]
 - For background tasks
 - Heavy compute load
- Remove LSM WAL, Raft log serves as the only log

TiDB Serverless Architecture

Cloud Storage Engine Architecture

Cloud Storage Engine Architecture

The New Cloud-Based Storage Engine

Before

Witness (4Z-3)

PingCAP \mathbb{P}

THANK YOU.

