The state of Rust trying to catch up with
Ada

whoami
oli-obk

a maintainer of the Rust compiler

what is this talk not about

Note: language bashing. on the other hand large corpo bashing is entirely fair game.

what it is about

e unsafe/unchecked

e generic packages/modules
o safety certification

e contracts

e subtypes

Note: on everything else | think there's little difference in capabilites, even if there are in
various important aspects of the usability and error avoidance.

unchecked vs unsafe

#[no mangle]

extern "C" fn malloc(n: usize) -> *const u8 {

std: :ptr::dangling ()

Note: extern/no_mangle not needing unsafe until very recently allowed you to do unsound

things without mentioning unsafe

generic packages/modules

error: expected one of ;' or “{°, found °'<°
--> src/lib.rs:1:8
|
1 | mod foo<T> {}

| S

expected one of “;° or "{°

Note: We support it so little, not even diagnostics know what you meant.

safety certification

Ferrocene (https://ferrocene.dev)
It's official: Ferrocene is ISO 26262 and IEC 61508 qualified!

Note: After some adacore internal drama where upper leadership is dumb (severing coop
with ferrous) that core Ada folk quit (not just over this | think, but timings are curious)

contracts

use core::contracts::*;

#[requires (x.bar > 50)]

#[ensures (|ret| *ret > 100)]

fn foo(x: Bar) -> i32 {
x.bar + 50

https://github.com/rust-lang/rust/pull/128045

Note: very recent impl, not stable

pattern types/subtypes

Note: finally we're getting to the real thing of this talk

state on stable Rust

subtype Non Zero is Integer range 1..Integer'Last;
subtype Non Null is not null SomePointer;

use std::num::NonZeroU32;

https://ferrocene.dev/
https://ferrous-systems.com/blog/officially-qualified-ferrocene/
https://github.com/rust-lang/rust/pull/128045

use std::ptr::NonNull;

Patterns

match foo {
1..100 => {}

_ =2 U

case Foo 1is
when 1 .. 100 => null;
when others => null;

end case;

match bar {
Dog | Cat | Bat => {}
_=> {1}

case Bar is
when Dog | Cat | Bat => null;
when others => null;

end case;

subtype Non Zero is Integer range 1l..Integer'Last;
subtype Non Null is not null SomePointer;

type NonZeroU32 = u32 is 1..;
// non-null is WIP
type NonNull = *const Thing is !null;

So what's the difference?

o pattern types need explicit creation

o instead of just being part of type conversion

o pattern types do not do strong typing

o u32 is 1.. isalways the same as any other u32 is

o pattern types only coerce, they don't relate

Creation

let x: u32 is 1.. = transmute (42);

subtype Non Zero is Integer range 1..Integer'Last;
X: Non Zero := 42;

Note: we're discussion allowing directly initializing from literals, but don't hold your breath

let a: u32 = 42;

let x: u32 is 1.. = transmute (a);

subtype Non Zero is Integer range 1..Integer'Last;
A: Integer := 42;

X: Non Zero := A;

Note: we're definitely not allowing this kind of conversion, we don't even allow you to go

from us to uie silently.

Future creation

Without specifying the pattern again:

let a: u32 = 42;

let x: u32 is 1.. = a.try into() .unwrap();

Note: via automatically implemented traits

Patterns can be combined

type SomePercent = Option<u32> is Some (0..=100) ;
type Disjunctive = u32 is 0..=100 | 500..=1000;

Note: not implemented yet, but "obvious" extension due to patterns allowing this in

general

Summary

e TODO

o generic modules
o initialize pattern types with literals

o idiomatic conversion from/to pattern types

« WIP

o contracts

o pattern types

caught up

o safety certification

o unsafe markings required

probably not happening

o strong type aliases

