
The state of Rust trying to catch up with
Ada

whoami

oli-obk

a maintainer of the Rust compiler

what is this talk not about

Note: language bashing. on the other hand large corpo bashing is entirely fair game.

what it is about

unsafe/unchecked

generic packages/modules

safety certification

contracts

subtypes

Note: on everything else I think there's little difference in capabilites, even if there are in

various important aspects of the usability and error avoidance.

unchecked vs unsafe

Note: extern/no_mangle not needing unsafe until very recently allowed you to do unsound

things without mentioning unsafe

generic packages/modules

#[no_mangle]

extern "C" fn malloc(_n: usize) -> *const u8 {

 dangling()

}

std::ptr::

Note: We support it so little, not even diagnostics know what you meant.

safety certification

Ferrocene (https://ferrocene.dev)

It’s official: Ferrocene is ISO 26262 and IEC 61508 qualified!

Note: After some adacore internal drama where upper leadership is dumb (severing coop

with ferrous) that core Ada folk quit (not just over this I think, but timings are curious)

contracts

https://github.com/rust-lang/rust/pull/128045

Note: very recent impl, not stable

pattern types/subtypes

Note: finally we're getting to the real thing of this talk

state on stable Rust

error: expected one of `;` or `{`, found `<`

 --> src/lib.rs:1:8

 |

1 | mod foo<T> {}

 | ^ expected one of `;` or `{`

use *;

#[requires(x.bar > 50)]

#[ensures(|ret| *ret > 100)]

fn foo(x: Bar) -> i32 {

 x.bar + 50

}

core::contracts::

subtype Non_Zero is Integer range 1..Integer'Last;

subtype Non_Null is not null SomePointer;

use NonZeroU32;std::num::

https://ferrocene.dev/
https://ferrous-systems.com/blog/officially-qualified-ferrocene/
https://github.com/rust-lang/rust/pull/128045

Patterns

So what's the difference?

pattern types need explicit creation

instead of just being part of type conversion

pattern types do not do strong typing

 u32 is 1.. is always the same as any other u32 is 1..

use NonNull;std::ptr::

match foo {

 1..100 => {}

 _ => {}

}

case Foo is

 when 1 .. 100 => null;

 when others => null;

end case;

match bar {

 Dog | Cat | Bat => {}

 _ => {}

}

case Bar is

 when Dog | Cat | Bat => null;

 when others => null;

end case;

subtype Non_Zero is Integer range 1..Integer'Last;

subtype Non_Null is not null SomePointer;

type NonZeroU32 = u32 is 1..;

// non-null is WIP

type NonNull = *const Thing is !null;

pattern types only coerce, they don't relate

Creation

Note: we're discussion allowing directly initializing from literals, but don't hold your breath

Note: we're definitely not allowing this kind of conversion, we don't even allow you to go

from u8 to u16 silently.

Future creation

Without specifying the pattern again:

Note: via automatically implemented traits

Patterns can be combined

Note: not implemented yet, but "obvious" extension due to patterns allowing this in

general

let x: u32 is 1.. = transmute(42);

subtype Non_Zero is Integer range 1..Integer'Last;

X: Non_Zero := 42;

let a: u32 = 42;

let x: u32 is 1.. = transmute(a);

subtype Non_Zero is Integer range 1..Integer'Last;

A: Integer := 42;

X: Non_Zero := A;

let a: u32 = 42;

let x: u32 is 1.. = a.try_into().unwrap();

type SomePercent = Option<u32> is Some(0..=100);

type Disjunctive = u32 is 0..=100 | 500..=1000;

Summary

TODO

generic modules

initialize pattern types with literals

idiomatic conversion from/to pattern types

WIP

contracts

pattern types

caught up

safety certification

unsafe markings required

probably not happening

strong type aliases

