
Fuchsia Components and
Linux Containers

By Claire Gonyeo

Who am I? Name: Claire

Role: Software Engineer

Team: Component Framework

Company: Google

What am I talking
about? Fuchsia!

First: a story about me

2015-2018: CoreOS
● I worked at CoreOS from 2015 to

2018

● I started on the rkt team

● Rkt aimed to be an alternative to
Docker

● Objective was for it to be usable
in the same ways as Docker

https://github.com/rkt/rkt

● Build software packages holding all
dependencies for an executable

● Distribute software packages using
The Update Framework

● Store software packages in content-
addressed storage, deduplicating
blobs across packages

● Reassemble content-addressed blobs
into directory structure

● Launch namespaced executables with
directory from last step as root

rkt didn't make it

2018: I joined Google

The Component Framework

● Build software packages holding all
dependencies for an executable

● Distribute software packages using
The Update Framework

● Store software packages in content-
addressed storage, deduplicating
blobs across packages

● Reassemble content-addressed blobs
into directory structure

● Launch namespaced executables with
directory from last step as root

The Component Framework

● Build software packages holding all
dependencies for an executable

● Distribute software packages using
The Update Framework

● Store software packages in content-
addressed storage, deduplicating
blobs across packages

● Reassemble content-addressed blobs
into directory structure

● Launch namespaced executables with
directory from last step as root

The Component Framework

Sources of
differences

● Fuchsia is not Linux

● One vs many hosts

● Different objectives

Fuchsia != Linux

Fuchsia

Zircon kernel

Linux kernel

Processes Memory management Time
Scheduling Message passing Logging

Processes Memory management Time
Scheduling Unix sockets Logging
Filesystems Users and Groups Drivers
Networking Process signals Paging
Namespacing Shutdown Power

Systemd

Component manager

ContainersComponents
User applications (web servers, apps, etc.)Drivers Networking Paging Filesystems

Shutdown Updates Power
User applications (web servers, apps, etc.)

Linux

So what does Zircon do?

Capabilities!

Capability
An unforgeable token

 … that references an object,

 … that has access rights,

 … that can be used to access its object,

 … that can be shared with other programs.

Capability File descriptor
An unforgeable token

 … that references an object,

 … that has access rights,

 … that can be used to access its object,

 … that can be shared with other programs.

An unforgeable token

 … that references an object,

 … that has access rights,

 … that can be used to access its object,

 … that can be shared with other programs.

What if a process
could only use file
descriptors?

int hello_fd = open("hello.txt", O_RDONLY); int hello_fd = openat(root_fd, "hello.txt", O_RDONLY);

󰢄 👍

Fuchsia

Zircon kernel

Linux kernel

Processes Memory management Time
Scheduling Message passing Logging

Processes Memory management Time
Scheduling Unix sockets Logging
Filesystems Users and Groups Drivers
Networking Process signals Paging
Namespacing Shutdown Power

Systemd

Component manager

ContainersComponents
User applications (web servers, apps, etc.)Drivers Networking Paging Filesystems

Shutdown Updates Power
User applications (web servers, apps, etc.)

Linux
Only accessible
with a handle

A default component

● A handle to its own
process

● A handle to its own job
● A handle to its package

directory

● Access to mutable storage
● Access to the network
● The ability to launch other

processes
● The ability to emit logs
● The ability to interact

with other components
(aside from its package
provider)

Has: Does not have:

Most Component
configuration knobs
are about capability
handles

Component manifest
{
 program: {
 runner: "elf",
 binary: "bin/app",
 },
 use: [{
 protocol: "fuchsia.logger.LogSink",
 }],
 capabilities: [{
 protocol: "fuchsia.examples.Echo",
 }],
 expose: [{
 protocol: "fuchsia.examples.Echo",
 from: "self",
 }],
}

syntax=docker/dockerfile:1

FROM node:lts-alpine
WORKDIR /app
COPY . .
RUN yarn install --production
CMD ["node", "src/index.js"]
EXPOSE 3000

Dockerfile
How to run application

Connects to log server

Provides echo IPC server

How to build application

One host or many?

Components Containers

FIDL
Fuchsia Interface Definition Language

Process B Process A

object_name

result code
optionally a VMO

Virtual memory object

Because components are all
on the same machine, they
can rely on sharing
machine-local resources

Fault tolerance

Components Containers

💀💀💀
💀
💀

💀
💀

Different goals mean different solutions

Package size Deployment ease

Deployment objective Cross-sandbox orchestration

Manifest
Executable
Required libraries

Manifest
Executable
Required libraries
Other libraries
Package manager
Shell + tools

docker run ...
Set of components
to run mostly fixed
at OS build time

Single consumer
device

Web
server

Web
server

Log
server

Data
base

Heterogenous
workload

k8s / docker compose

Minimal
Convenient

Part of
component
framework

Handled at
higher layer

root

bootstrap

driver
manager fshost archivist

core

network sshd test
manager

network

dhcpd dhcpv6-
client

dns-
resolver

http-
client netcfg netstack

fuchsia.logger.LogSink fuchsia.posix.socket.Provider

network

dhcpd dhcpv6-
client

dns-
resolver

http-
client netcfg netstack

fuchsia.net.dhcp.Server

network

dhcpd dhcpv6-
client

dns-
resolver

http-
client netcfg netstack

Has no executable

root

bootstrap

driver
manager fshost archivist

core

network sshd test
manager

maintained by network team

Capability-
centric des

ign

Single machine scopeTree of sandboxes

Weaker inter-sandbox fault tolerance

Standardized IPC system

Model pow
ers low-l

evel

OS featur
es

More detailed inputs/outputsfrom sandbox

Configuration and
 building

in separate files Sandboxes
can encaps

ulate

other sand
boxes

Thank you!
https://fuchsia.dev

https://fuchsia.dev

