
Linux Kernel Mainline Real-Time History, Support and
Experience Based on Robotic and Automotive Projects

Pavel Pisa
pisa@fel.cvut.cz , ppisa@pikron.com

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Control Engineering
https://fel.cvut.cz/en

PiKRON s.r.o
https://www.pikron.com/

2025-02-02
FOSDEM 2025

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience

https://fel.cvut.cz/en
https://www.pikron.com/


Content of Presentation

1 Introduction

2 Alternatives for Real-Time with Linux Domain

3 Fully-Preemptive Patches for Linux Kernel

4 Latency Testing

5 Fully-Preemptive Patches Reached Mainline Linux Kernel

6 More Real-Time Chalenges for GNU/Linux

7 Sources and Further Reading

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Introduction

Outline

1 Introduction

2 Alternatives for Real-Time with Linux Domain

3 Fully-Preemptive Patches for Linux Kernel

4 Latency Testing

5 Fully-Preemptive Patches Reached Mainline Linux Kernel

6 More Real-Time Chalenges for GNU/Linux

7 Sources and Further Reading

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Introduction

Author’s Point of View Base and Disclaimer

• 1988 – practice at Development Wokshop of Czech Academy of Sciences, obtained
Unix root account on Philips Microcontroller Development System (PMDS 85)

• 1990 – became responsible for HPLC laboratory instruments firmware for my
father’s projects

• 1990 – started study at Czech Technical University in Prague and with Petr
Porazil (schoolmate) overtaken all electrical HW and SW development

• 1992 – PiKRON s.r.o. foundation, bought own development and continued
projects there due to collapse of the state owned Laboratory Instruments Prague

• around 1993 – introduced by schoolmates to set of diskettes (Slackware
GNU/Linux, kernel 1.1.18)

• interest to use Linux for control application

• our own RS-485 based protocol to control instruments by PC UART and own
Intel 80510 based card (AA SIO)

• SJA1000 controller integrated to AA SIO as well
• parallel port GPIO and stepper and DC motors applications

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Introduction

RS-385, uLAN, CAN Bus, LinCAN and AA SIO ISA Addon Card (1997)

• 1991 RS-485 uLAN
https://ulan.sourceforge.net/

• MS DOS and Intel 8051
• 1994 Linux till today, but out of mainline
• later Windows NT 3.5, WMD Windows 2000

... Windows 11
• UART, ISA, PCI, USB, embedded systems

NXP LPC, NuttX

• CAN bus experiments on AA SIO

• 2003 LinCAN driver
https://ortcan.sourceforge.net/lincan/

• used by more companies and in the wild even
in 2020

• but focus and help to SocketCAN (drivers
bittiming)

• 2025 LinCAN based CAN FD
stack mainlined into RTEMS
https://www.rtems.org/

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience

https://ulan.sourceforge.net/
https://ortcan.sourceforge.net/lincan/
https://www.rtems.org/


Introduction

Need for Real-Time

• The ISO/IEC 2382 standard defines ”Real-Time”as the capability of a system to
respond to inputs or events within a specified time frame, known as deadline.

• Hard-Realtime systems – guarantee deterministic behavior, violation of the
deadline → catastrophic consequences (defined by ISO 26262, IEC 61508,
SIL, ASIL, etc.)

• Soft-Realtime systems – can violate deadline occasionally → quality of
service degradation

• Hard Real-Time – used in control systems, avionics, automotive, industrial
production, robotics, medical, robotic surgery, etc.

• Soft Real-Time – on-line video capture, processing, delivery, audio including on
stage audio mixing, etc.

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Introduction

The First Real-Time Linux Workshop – RTLWS (Year 1999)

• Need for data acquisition and IO cards control in
real-time

• Initiated by Peter Wurmsdobler (Centre de Transfert
des Microtechniques) developing micro-piezo-electric
testing rig (MicroCoupleMetre) for torque testing

• Nicholas Mc Guire, Peter Wurmsdobler, Stefan Jakubek

• FSMLab’s RTlinux (Victor Yodaiken) – absorbed by
WindRiver

• DIAPM Dipartimento di Ingegneria Aerospaziale,
Politecnico di Milano

• DIAPM’s RTAI → RTAI, Xenomai, ADEOS

• KURT: The Kansas University Real-Time Linux

https://www.osadl.org/RTLWS-1999.rtlws-1999.0.html

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience

https://www.osadl.org/RTLWS-1999.rtlws-1999.0.html


Alternatives for Real-Time with Linux Domain

Outline

1 Introduction

2 Alternatives for Real-Time with Linux Domain

3 Fully-Preemptive Patches for Linux Kernel

4 Latency Testing

5 Fully-Preemptive Patches Reached Mainline Linux Kernel

6 More Real-Time Chalenges for GNU/Linux

7 Sources and Further Reading

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Alternatives for Real-Time with Linux Domain

8-th Real Time Linux Workshop – Lanzhow University (Year 2006)

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Alternatives for Real-Time with Linux Domain

8-th RTLWS – RT Alternatives Debate (Year 2006)

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Alternatives for Real-Time with Linux Domain

Alternatives – Mainline Linux Kernel Change to RTOS (Year 2006)

Fully-Preemptive Mainline Kernnel – Thomas Gleixner (Linutronix)

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Alternatives for Real-Time with Linux Domain

Alternatives – Dual Kernel – RT Linux (Year 2006)

LT Linux – Nicholas Mc Guire (OpenTech)

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Alternatives for Real-Time with Linux Domain

Alternatives – RTAI/ADEOS (Year 2006)

RTAI/ADEOS – professor Roberto Bucher (University of Applied Sciences of Southern
Switzerland – SUPSI)

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Alternatives for Real-Time with Linux Domain

Alternatives – Hypervisor Xtratum (Year 2006)

Xtratum – Ismael Ripoll (Universidad Politecnica de Valencia – UPVLC)

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Alternatives for Real-Time with Linux Domain

Alternatives – Hypervisor L4 and L4 RTOS Domain (Year 2006)

L4 Fiasco – professor Herman Haertig (Technical University Dresden)

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Fully-Preemptive Patches for Linux Kernel

Outline

1 Introduction

2 Alternatives for Real-Time with Linux Domain

3 Fully-Preemptive Patches for Linux Kernel

4 Latency Testing

5 Fully-Preemptive Patches Reached Mainline Linux Kernel

6 More Real-Time Chalenges for GNU/Linux

7 Sources and Further Reading

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Fully-Preemptive Patches for Linux Kernel

Fully-Preemptive Linux Kernel

Realtime is not as fast as possible - realtime is as fast as specified – Doug
Niehaus, Summer 2001

• More attempts to run RT task parallel to Linux base on same CPU (RT-Linux,
RTAI) existed. But around 2001 and 2006 KURT/KUPS project tries to make
whole kernel real-time. Work followed by Timesys, Thomas Gleixner, Ingo Molnar
and OSADL.org.

• The main idea behind changing Linux kernel to RTOS is to use already present
support for multiple cores SMP and provide to system as many virtual CPUs as
there are running threads/task.

• Realized by replacement of spin-lock synchronization by RT mutexes. redefinition
of spin lock/spin unlock, spin lock irqsave/spin unlock irqrestore to use struct
rt mutex instead of atomic variables based lock

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Fully-Preemptive Patches for Linux Kernel

Linux Kernel Development

• 1991-01-05 Linus Torvalds bought IBM PC

• Linus informs about intent to write a kernel for fun

• 1991-08-25 – version 0.01 published on Internet

• 1994 – v1.0 – only single i386 CPU, no kernel preemption

• 1996 – v2.0 – SMP for applications, BKL (Big Kernel Lock) for kernel

• 1999 – v2.2 – spinlocked critical sections, m68k a PowerPC

• 2001 – v2.4 – ISA PnP, USB, PC Cards, PA-RISC, LVM, RAID, ext3, Bluetooth

• 2003 – v2.5.2 – ultra-scalable O(1) SMP and UP scheduler

• 2003 – v2.5.4 – PREEMPT kernel option, preemptible outside critical sections

• 2003 – v2.5.37-mm1 – Read-Copy Update infrastructure, Paul E. McKenney

• 2003 – v2.6 – mainline µClinux, ARM and more, PAE, ALSA, preemption, Native
POSIX Thread Library, Futex, latter FUSE, JFS, XFS, ext4, robust mutex, priority
inheritance mutex, high resolution timers

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Fully-Preemptive Patches for Linux Kernel

The First Mainline Accepted Patches from the RT Project

• CONFIG PREEMPT RT separate patches, spinlock → RT-mutex, removal BKL,
IRQ → threads, preemptible RCU

• 2004 – v2.6.9 – Sven-Thorsten Dietrich (MontaVista) announces Real Time Kernel

• 2004 – Ingo Molnar and Thomas Gleixner joined on realtime preempt patches

• 2005 – v2.6.11 – Generic Interrupt subsystem

• 2006 – v2.6.16 – RT-Mutex (Thomas Gleixner), Priority Inherintance, PI-Futex,
Mutexes, RT-mutex implementation design documentation (Steven Rostedt),
Lockdep,
the first alternative production ready Preempt-RT release

• 2007 – v2.6.21 – Generic timekeeping, High resolution timers, Tickless idle

• 2007 – v2.6.23 – mainline switch to Completely Fair Scheduler (CFS)

• 2008 – v2.6.27 – Tracing

• 2009 – v2.6.32 – Preemptible RCU, Threaded interrupts, Raw Spinlocks

• 2010 – v2.6.37 – RT maintenance mode
CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Fully-Preemptive Patches for Linux Kernel

Linux Kernel Development

• 2011 – v2.6.39 – ”BKL: That’s all, folks” in mainline kernel

• 2016 – v4.9 – LF Realtime Linux project, Timer wheel rework

• 2017 – v4.14 – CPU hotplug rework

• 2018 – v4.19 – Tree wide cleanup of locking constructs

• 2019 – v5.4 – FPU, stacktrace, timers support for RT, Introduction of
CONFIG PREEMPT RT into mainline

• 2020 – v5.10 – BPF support for RT, migration control and high-mem cleanup,
seqcount rework, in interrupt() rework

• 2021 – v5.15 – First batch of printk() related work, RT locking primitives

• 2022 – v6.1 – Network consolidation, Further prink() work

• 2023 – v6.6 – Continue prink() rework, Preparation of serial drivers

• 2024 – v6.11 – Again printk() waits for the final bits

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Fully-Preemptive Patches for Linux Kernel

Linux Real-Time Thread Attributes Preparation

pthread_attr_t attr;

struct sched_param schparam;

/* Initialize thread attributes by default parameters */

pthread_attr_init(&attr);

/* The scheduling policy is applied to the started thread */

pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED);

/* Choice of the desired scheduling policy */

pthread_attr_setschedpolicy(&attr, SCHED_FIFO);

/* Specify the thread priority in the given policy range */

schparam.sched_priority = sched_get_priority_max(SCHED_FIFO) - 10;

/* Setup scheduling policy in the thread create attributes */

pthread_attr_setschedparam(&attr, &schparam);

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Fully-Preemptive Patches for Linux Kernel

Linux Real-Time Thread Start

Lock whole program in the memory

mlockall(MCL_FUTURE | MCL_CURRENT);

Start RT thread – start routine()

/* Create thread with parameters specified */

pthread_create(thread, &attr, start_routine, arg);

/* Release resources used to build parameters */

pthread_attr_destroy(&attr);

List individual threads with ascending priority

ps Hxa --sort rtprio -o pid,policy,rtprio,state,tname,time,command

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Fully-Preemptive Patches for Linux Kernel

Linux Real-Time Sampling Period Implementation

sample_period_nsec = 20*1000*1000; /* period in nanoseconds */

clock_gettime(CLOCK_MONOTONIC, &sample_period_time);

do {

/* Compute time for next period invocation */

sample_period_time.tv_nsec += sample_period_nsec;

if (sample_period_time.tv_nsec > 1000*1000*1000) {

sample_period_time.tv_nsec -= 1000*1000*1000;

sample_period_time.tv_sec += 1;

}

clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME,

&sample_period_time, NULL);

/* The place to insert code to execute periodically */

...

} while(1);

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Fully-Preemptive Patches for Linux Kernel

Ensure Transition to the Safe State in Case of User Break or Error
/* Stop actuators in the case of error */

void stop_motor(void)

{

/* Place to put code for technology stop */

}

/* Signal handler and program termination in case of error */

void sig_handler(int sig)

{

stop_motor();

exit(1);

}

...

struct sigaction sigact;

memset(&sigact, 0, sizeof(sigact));

sigact.sa_handler = sig_handler;

sigaction(SIGINT, &sigact, NULL);

sigaction(SIGTERM, &sigact, NULL);

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Fully-Preemptive Patches for Linux Kernel

PWM and GPIO Only Based DC Motor PRi Interfacing

3.3V 1

GPIO2 SDA 3

GPIO3 SCL 5

GPIO4 CLK 7

GND 9

GPIO17 11

GPIO27 13

GPIO22 15

3.3V 17

GPIO10 MOSI 19

GPIO9 MISO 21

GPIO11 SCLK 23

GND 25

2 5V

4 5V

6 GND

8 GPIO14 TX

10 GPIO15 RX

12 GPIO18 PWM

14 GND

16 GPIO23

18 GPIO24

20 GND

22 GPIO25

24 GPIO8 CE0

26 GPIO7 CE1

Raspberry Pi - P1

3.3V UART

1 GND

2 TX

3 3.3V

4 RX

CHB

CHA

IRC

HI DRV

LO DRV

IN

HI DRV

LO DRV

IN

DC
MOTOR

Motor Power Supply

Czech Technical University in Prague
Departemet of Control Engineering FEE
Radek Mečiar and Pavel Píša 2014

RPi Motor Control Interface Prototype

As simple as possible

• Four NOR gates (SN74HCT02) and H-bridge (L6203)

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Fully-Preemptive Patches for Linux Kernel

Example of PSD (PID) Controller for DC Motor Control

/* Control error, difference between requested and measured state, computation */

err = (pos_req - actual_pos);

/* Accumulator of control error */

ctrl_i_sum += err * ctrl_i;

/* Control action computation */

action = ctrl_p * err + /* proportional component */

ctrl_i_sum + /* "integration" component */

/* differential/"derivative" component */

ctrl_d * (err - ctrl_err_last);

/* Remember the current error for next differential component computation */

ctrl_err_last = err;

/* Scale adjustment for computation in the fixed point arithmetic */

rpi_bidirpwm_set(action >> 8);

https://github.com/ppisa/rpi-rt-control/tree/master/appl/rpi_simple_dc_servo

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience

https://github.com/ppisa/rpi-rt-control/tree/master/appl/rpi_simple_dc_servo


Fully-Preemptive Patches for Linux Kernel

Or Use Some Rapping Control Applications Development System

• pysimCoder (started by Roberto Bucher)
https://github.com/robertobucher/pysimCoder

https://github.com/robertobucher/pysimCoder-examples

• Matlab® Simulink®

• Simulink Embedded Coder target for Linux
http://lintarget.sourceforge.net/

https://github.com/aa4cc/ert_linux

• Matlab/Simulink model for Xilinx Zynq and MZ APO DC and PMSM
peripherals
https://github.com/aa4cc/zynq-rt-control/

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience

https://github.com/robertobucher/pysimCoder
https://github.com/robertobucher/pysimCoder-examples
http://lintarget.sourceforge.net/
https://github.com/aa4cc/ert_linux
https://github.com/aa4cc/zynq-rt-control/


Fully-Preemptive Patches for Linux Kernel

x86 Linux ERT and Parallel Kinematic Robot Control

• 4 DC motors, 4 incremental encoders, other I/Os

• Presented at Embedded world 2014

• Sampling period 1ms but complex computations

• More reliable that previously used Windows target

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Fully-Preemptive Patches for Linux Kernel

DC Motor Control for Education, This Time on Zynq FPGA

CHB

CHA

IRC

HI DRV

LO DRV

IN

HI DRV

LO DRV

IN

DC
MOTOR

Motor Power Supply

CR

PERIOD

counter

DUTY

IRC

PWM_EN

>

DIR_B DIR_A duty value

=

RESET100 MHz

<

Quadrature
Encoder

UP DOWN

6

0293031

https://gitlab.fel.cvut.cz/canbus/zynq/zynq-can-sja1000-top/-/tree/master/system/ip/

dcsimpledrv_1.0

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience

https://gitlab.fel.cvut.cz/canbus/zynq/zynq-can-sja1000-top/-/tree/master/system/ip/dcsimpledrv_1.0
https://gitlab.fel.cvut.cz/canbus/zynq/zynq-can-sja1000-top/-/tree/master/system/ip/dcsimpledrv_1.0


Fully-Preemptive Patches for Linux Kernel

pysimCoder Servo Control (”Steer by Wire”) on Xylinx Zynq MZ APO Kit

https://github.com/robertobucher/pysimCoder-examples

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience

https://github.com/robertobucher/pysimCoder-examples


Latency Testing

Outline

1 Introduction

2 Alternatives for Real-Time with Linux Domain

3 Fully-Preemptive Patches for Linux Kernel

4 Latency Testing

5 Fully-Preemptive Patches Reached Mainline Linux Kernel

6 More Real-Time Chalenges for GNU/Linux

7 Sources and Further Reading

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Latency Testing

OSADL QA Farm Real-Time

• Open Source Automation Development Lab – long term testing and Quality
Assurance Realtime Farm
https:

//www.osadl.org/OSADL-QA-Farm-Real-time.linux-real-time.0.html

• Latest available RT-Preempt
https://www.kernel.org/pub/linux/kernel/projects/rt/

• Maximal under about 40 µsec on powerful SMP x86 systems

• But even on less powerfull ARM 32-bit systems usually 200 µsec

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience

https://www.osadl.org/OSADL-QA-Farm-Real-time.linux-real-time.0.html
https://www.osadl.org/OSADL-QA-Farm-Real-time.linux-real-time.0.html
https://www.kernel.org/pub/linux/kernel/projects/rt/


Latency Testing

RPi 3.18.7-rt2 Latency Plot (2015)
OSADL.org – OSADL.org QA Farm Realtime – BCM2835 rack-b-slot-3
cyclictest -l50000000 -m -n -a0 -t1 -p99 -i400 -h400 -q

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Latency Testing

Intel Core i7-2600K @3400 MHz, kernel 6.2.8-rt11 Latency Plot (2024)
OSADL.org – OSADL.org QA Farm Realtime – rack-4-slot-6
cyclictest -l00000000 -m -Sp99 -i200 -h200 -q

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Latency Testing

Intel Core i7-2600K @3400 MHz, kernel 6.2.8-rt11 Long Term (2024)

Latency (us)

20
40

60
80

100
120

140
160

180
200

Rep
eti

tio
ns

50

100

150

200

250

300

350

400

450

500

550

F
requency (log10) −1

0
1
2
3
4
5
6
7

System in rack #4, slot #6
Recording from 01.01.2024 until 01.11.2024

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Fully-Preemptive Patches Reached Mainline Linux Kernel

Outline

1 Introduction

2 Alternatives for Real-Time with Linux Domain

3 Fully-Preemptive Patches for Linux Kernel

4 Latency Testing

5 Fully-Preemptive Patches Reached Mainline Linux Kernel

6 More Real-Time Chalenges for GNU/Linux

7 Sources and Further Reading

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Fully-Preemptive Patches Reached Mainline Linux Kernel

RT Event – Thomas Gleixner (Year 2024)

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Fully-Preemptive Patches Reached Mainline Linux Kernel

RT Event – RT Enablement Patch Passed to Linus Torvalds (Year 2024)

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Fully-Preemptive Patches Reached Mainline Linux Kernel

RT Event – RT Enablement Patch Passed to Linus Torvalds (Year 2024)

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Fully-Preemptive Patches Reached Mainline Linux Kernel

RT Event – The Golden Patch for 6.12 Kernel (Year 2024)

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Fully-Preemptive Patches Reached Mainline Linux Kernel

RT Event – Linus Torvalds and Thomas Gleixner (Year 2024)

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



More Real-Time Chalenges for GNU/Linux

Outline

1 Introduction

2 Alternatives for Real-Time with Linux Domain

3 Fully-Preemptive Patches for Linux Kernel

4 Latency Testing

5 Fully-Preemptive Patches Reached Mainline Linux Kernel

6 More Real-Time Chalenges for GNU/Linux

7 Sources and Further Reading

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



More Real-Time Chalenges for GNU/Linux

PREEMPT RT and OSADL QA Farm on Real-time

ARM Xilinx Zync @624 MHz, 5.15.72-rt48, rack 2, slot 3
cyclictest -l100000000 -m -Sp99 -i200 -h400 -q

100 million samples per plot, performance governor, duration 5 hours, 33 minutes
https://www.osadl.org/OSADL-QA-Farm-Real-time.linux-real-time.0.html

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience

https://www.osadl.org/OSADL-QA-Farm-Real-time.linux-real-time.0.html


More Real-Time Chalenges for GNU/Linux

Communication Latency is Critical Often Too

• OSADL.org runs networking latency benchmarks as well

• CTU developed on Volkswagen contract multiple systems to evaluate CAN bus
latencies

• CAN drivers on x86 (LinCAN, SocketCAN), MPC5200 (LinCAN, SocketCAN,
RTEMS) evaluation

• Linux kernel CAN gateway evaluation for PREEMPT RT and mainline kernels
under different loads and built conditions

• Linux kernel CAN frames processing overhead evaluation when different system
calls are used (rtems kernel, read-write, readnb-write, readbusy-write,
mmap-mmap, mmap-write, mmapbusy-mmap, mmapbusy-write, readnb-mmap,
readbusynoirq-write, mmsg-mmsg)
for complete report see Performance evaluation of Linux CAN-related system calls
by M. Sojka and P. Pisa Czech Technical University in Prague (2014) report

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



More Real-Time Chalenges for GNU/Linux

Current CAN Latency Testing Initiative

• Use CTU CAN FD IP Core (10 nsec timestamping sychronized over 4 channels on
Zynq MZ APO)

• Prepare system to run daily test on mainlne and RT PREEMPT development
kernels

• Timestamping code implemented by Matej Vasilevski in frame of his thesis
https://dspace.cvut.cz/bitstream/handle/10467/101450/

F3-DP-2022-Vasilevski-Matej-vasilmat.pdf

• Work on automation and presentation of results on web in a frame of Pavel
Hronek’s thesis
https://dspace.cvut.cz/bitstream/handle/10467/109308/

F3-BP-2023-Hronek-Pavel-CAN-Latester-Automation.pdf

• All sources, drivers and documentation for CTU OTREES CAN related projects
and testing on Linux and RTEMS is available at
https://canbus.pages.fel.cvut.cz/

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience

https://dspace.cvut.cz/bitstream/handle/10467/101450/F3-DP-2022-Vasilevski-Matej-vasilmat.pdf
https://dspace.cvut.cz/bitstream/handle/10467/101450/F3-DP-2022-Vasilevski-Matej-vasilmat.pdf
https://dspace.cvut.cz/bitstream/handle/10467/109308/F3-BP-2023-Hronek-Pavel-CAN-Latester-Automation.pdf
https://dspace.cvut.cz/bitstream/handle/10467/109308/F3-BP-2023-Hronek-Pavel-CAN-Latester-Automation.pdf
https://canbus.pages.fel.cvut.cz/


More Real-Time Chalenges for GNU/Linux

CAN Gateway Latency Definition

server internet

Ethernet LAN

serial + power

can0 can1 can2 can3

MZAPO
Measuring device

MZAPO
DUT

CAN bus A CAN bus B TB

CAN bus A

CAN bus B

time

msg 1

Duration

msg 1'

CAN gateway
(Linux)

 GW latency

RX timestamp 1 RX timestamp 2

Total latency

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



More Real-Time Chalenges for GNU/Linux

CAN Gateway Latency Tester Cabinet

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



More Real-Time Chalenges for GNU/Linux

CAN Latency Tester – Daily Results
Overview Inspect Compare

Time series of maximum latency measured in selected configurations

Apr 2023 Jul 2023 Oct 2023 Jan 2024 Apr 2024 Jul 2024 Oct 2024
5

0.1

2

5

1

2

5

10

2

5

100

2

5

1000

2

5 master-flood
master-flood-kern
rt-flood-prio
rt-flood-kern-prio
rt-flood-prio-load
rt-flood-kern-prio-load

W
or

st
 la

te
nc

y 
(m

s)

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



More Real-Time Chalenges for GNU/Linux

CAN Latency Tester – Inspection

RT, Under Load, RT priority set, Flood, CAN FD
Overview Inspect Compare

○master ●RT

☑ Under load ☑ RT priority set ☑ Kernel GW ☑ Flood ☑ CAN FD

Gateway latency

Line plot Heatmap view Surface view

Click into graph to show individual histogram below

Aug 25 Sep 8 Sep 22 Oct 6 Oct 20Jul 28
2024

Aug 11
0

1

2

3

4

La
te

nc
y

(m
s)

Date

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



More Real-Time Chalenges for GNU/Linux

CAN Latency Tester – Inspection – RT Bad, RT OK

run-241022-045232-hist+6.12.0-rc2-rt4-g7bc6f8add0ae+flood-kern-prio-fd-load.json

Toggle cumulative

S ingle run statistics

Lost: 0 (0.00 %)

Best: 0.115 ms

5th percentile: 0.127 ms

Median: 0.212 ms

95th percentile: 1.779 ms

Worst: 5.015 ms

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
8
9

1

2

3

4
5
6
7
8
9

10

2

3

4
5
6
7
8
9

100

latency (ms)

run-241029-045308-hist+6.12.0-rc4-rt6-ga4680e452f4f+flood-kern-prio-fd-load.json

Toggle cumulative

S ingle run statistics

Lost: 0 (0.00 %)

Best: 0.117 ms

5th percentile: 0.121 ms

Median: 0.18 ms

95th percentile: 0.297 ms

Worst: 0.426 ms

0.15 0.2 0.25 0.3 0.35 0.4
8
9

1

2

3

4
5
6
7
8
9

10

2

3

4
5
6
7
8
9

100

latency (ms)

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



More Real-Time Chalenges for GNU/Linux

CAN Gateway Latency – Heatmap and Surface

Overview Inspect Compare

○master ●RT

☐ Under load ☑ RT priority set ☑ Kernel GW ☐ Flood ☑ CAN FD

Gateway latency

Line plot Heatmap view Surface view

Click into graph to show individual histogram below

0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

50

100

150

200

250

300

350

400

450

0

500

1000

1500

2000

2500

latency (ms)

ru
n 

in
de

x

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



More Real-Time Chalenges for GNU/Linux

CAN Gateway Latency – Compare

CAN Latency tester

Overview Inspect Compare

Add test configuration Series to compare: Max

Time series of measured latencies in selected configurations

Selected configurations: master-oaat X rt-oaat X rt-oaat-kern-prio X

Mar 19

2023

Mar 26 Apr 2 Apr 9 Apr 16 Apr 23 Apr 30 May 7

2

3

4

5

6

7

8

9
1

2

3

4

5

6

master-oaat

rt-oaat

rt-oaat-kern-prio

L
a

te
n

c
y
 (

m
s
)

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Sources and Further Reading

Outline

1 Introduction

2 Alternatives for Real-Time with Linux Domain

3 Fully-Preemptive Patches for Linux Kernel

4 Latency Testing

5 Fully-Preemptive Patches Reached Mainline Linux Kernel

6 More Real-Time Chalenges for GNU/Linux

7 Sources and Further Reading

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Sources and Further Reading

Previous Presentations

• InstallFest 2015

Is Raspberry Pi Usable for Industrial and Robotic Applications?
http://installfest.cz/if15/slides/pisa_rpi.pdf

• LinuxDays 2015

Linux, RPi and other HW for DC and Brushless/PMSM Motor Control
https:

//www.linuxdays.cz/2015/video/Pavel_Pisa-Rizeni_stejnosmernych_motoru.pdf

• LinuxDays 2016

Processor Systems, GNU/Linux and Control Applications
https://www.linuxdays.cz/2016/video/Pavel_Pisa-Procesorove_systemy_a_nejen_

GNU_Linux_v_ridicich_aplikacich.pdf

• InstallFest 2017

GNU/Linux and FPGA in Real-time Control Applications
https://installfest.cz/if17/slides/so_t2_pisa_realtime.pdf

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience

http://installfest.cz/if15/
http://installfest.cz/if15/slides/pisa_rpi.pdf
https://www.linuxdays.cz/2015/program/
https://www.linuxdays.cz/2015/video/Pavel_Pisa-Rizeni_stejnosmernych_motoru.pdf
https://www.linuxdays.cz/2015/video/Pavel_Pisa-Rizeni_stejnosmernych_motoru.pdf
https://www.linuxdays.cz/2016/program/
https://www.linuxdays.cz/2016/video/Pavel_Pisa-Procesorove_systemy_a_nejen_GNU_Linux_v_ridicich_aplikacich.pdf
https://www.linuxdays.cz/2016/video/Pavel_Pisa-Procesorove_systemy_a_nejen_GNU_Linux_v_ridicich_aplikacich.pdf
https://installfest.cz/if17/program
https://installfest.cz/if17/slides/so_t2_pisa_realtime.pdf


Sources and Further Reading

Related Articles

• Ṕı̌sa, P., Vacek, F.:Open Source Components for the CAN Bus, 5-th RTLWS, 2003

• Ṕı̌sa, P., Lisový, R.:COMEDI and UIO drivers for PCI Multifunction Data Acquisition and
Generic I/O Cards and Their QEMU Virtual Hardware Equivalents, 13-th RTLWS, 2011,
drivers in mainline UIO, COMEDI

• Ṕı̌sa, P., Smoĺık, P., Fanda, F., Boháček, M., Štefan, J., Němeček, P.: Process Data
Connection Channels in uLan Network for Home Automation and Other Distributed
Applications, 13-th RTLWS, 2011, related to uLAN project

• Lenc, M., Ṕı̌sa, P., and Bucher, R.: pysimCoder – Open-Source Rapid Control Prototyping
for GNU/Linux and NuttX, In: 2023 24th International Conference on Process Control
(PC), Strbske Pleso, Slovakia, 2023, pp. 102-107 DOI: 10.1109/PC58330.2023.10217596

• Ṕı̌sa, P.; Hronek, P.; Vasilevski, M.; Novák, J.: Continuous CAN Bus Subsystem Latency
Evaluation and Stress Testing on GNU/Linux-Based Systems, In: embedded world
Conference 2024. Haar: WEKA FACHMEDIEN GmbH, 2024. p. 77-82. ISBN
978-3-645-50199-6

• Lenc, M.; Ṕı̌sa, P.: Scheduling of CAN frame transmission when multiple FIFOs with
assigned priorities are used in RTOS drivers, international CAN Conference, CAN in
Automation, 2024

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Sources and Further Reading

Information Sources

• It is really time to celebrate!
25th anniversary of RTLWS
20th anniversary of Preempt RT
Thomas Gleixner and Heinz Egger
https://www.linutronix.de

• https://wiki.linuxfoundation.org/realtime/start

• https://www.osadl.org

• https://canbus.pages.fel.cvut.cz/

• https://gitlab.fel.cvut.cz/otrees/org/-/wikis/home – theses, talks,
references

• https://social.kernel.org/ppisa

• Photo c⃝ Pavel Pisa

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience

https://www.linutronix.de
https://wiki.linuxfoundation.org/realtime/start
https://www.osadl.org
https://canbus.pages.fel.cvut.cz/
https://gitlab.fel.cvut.cz/otrees/org/-/wikis/home
https://social.kernel.org/ppisa

	Introduction
	Alternatives for Real-Time with Linux Domain
	Fully-Preemptive Patches for Linux Kernel
	Latency Testing
	Fully-Preemptive Patches Reached Mainline Linux Kernel
	More Real-Time Chalenges for GNU/Linux
	Sources and Further Reading

