Linux Kernel Mainline Real-Time History, Support and Experience Based on Robotic and Automotive Projects

> Pavel Pisa pisa@fel.cvut.cz , ppisa@pikron.com

Czech Technical University in Prague Faculty of Electrical Engineering Department of Control Engineering https://fel.cvut.cz/en

> PiKRON s.r.o https://www.pikron.com/

2025-02-02 FOSDEM 2025

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience

イロト イポト イヨト イヨー

Introduction

- 2 Alternatives for Real-Time with Linux Domain
- 3 Fully-Preemptive Patches for Linux Kernel
- 4 Latency Testing
- 5 Fully-Preemptive Patches Reached Mainline Linux Kernel
- 6 More Real-Time Chalenges for GNU/Linux
- 7 Sources and Further Reading

Outline

Introduction

- 2 Alternatives for Real-Time with Linux Domair
- 3 Fully-Preemptive Patches for Linux Kernel
- 4 Latency Testing
- 5 Fully-Preemptive Patches Reached Mainline Linux Kernel
- 6 More Real-Time Chalenges for GNU/Linux
- Sources and Further Reading

ヘロト ヘロト ヘヨト

Author's Point of View Base and Disclaimer

- 1988 practice at Development Wokshop of Czech Academy of Sciences, obtained Unix root account on Philips Microcontroller Development System (PMDS 85)
- 1990 became responsible for HPLC laboratory instruments firmware for my father's projects
- 1990 started study at Czech Technical University in Prague and with Petr Porazil (schoolmate) overtaken all electrical HW and SW development
- 1992 PiKRON s.r.o. foundation, bought own development and continued projects there due to collapse of the state owned Laboratory Instruments Prague
- around 1993 introduced by schoolmates to set of diskettes (Slackware GNU/Linux, kernel 1.1.18)
- interest to use Linux for control application
 - our own RS-485 based protocol to control instruments by PC UART and own Intel 80510 based card (AA_SIO)
 - SJA1000 controller integrated to AA_SIO as well
 - parallel port GPIO and stepper and DC motors applications

RS-385, uLAN, CAN Bus, LinCAN and AA_SIO ISA Addon Card (1997)

- 1991 RS-485 uLAN
 - https://ulan.sourceforge.net/
 - MS DOS and Intel 8051
 - 1994 Linux till today, but out of mainline
 - later Windows NT 3.5, WMD Windows 2000 ... Windows 11
 - UART, ISA, PCI, USB, embedded systems NXP LPC, NuttX
- CAN bus experiments on AA_SIO
- 2003 LinCAN driver
 - https://ortcan.sourceforge.net/lincan/
 - used by more companies and in the wild even in 2020
 - but focus and help to SocketCAN (drivers bittiming)

• 2025 LinCAN based CAN FD stack mainlined into RTEMS https://www.rtems.org/

Need for Real-Time

- The ISO/IEC 2382 standard defines "Real-Time" as the capability of a system to respond to inputs or events within a specified time frame, known as deadline.
 - Hard-Realtime systems guarantee deterministic behavior, violation of the deadline \rightarrow catastrophic consequences (defined by ISO 26262, IEC 61508, SIL, ASIL, etc.)
 - Soft-Realtime systems can violate deadline occasionally \rightarrow quality of service degradation
- Hard Real-Time used in control systems, avionics, automotive, industrial production, robotics, medical, robotic surgery, etc.
- Soft Real-Time on-line video capture, processing, delivery, audio including on stage audio mixing, etc.

・ロット (雪) () () () ()

The First Real-Time Linux Workshop – RTLWS (Year 1999)

- Need for data acquisition and IO cards control in real-time
- Initiated by Peter Wurmsdobler (Centre de Transfert des Microtechniques) developing micro-piezo-electric testing rig (MicroCoupleMetre) for torque testing
- Nicholas Mc Guire, Peter Wurmsdobler, Stefan Jakubek
- FSMLab's RTlinux (Victor Yodaiken) absorbed by WindRiver
- DIAPM Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano
- DIAPM's RTAI \rightarrow RTAI, Xenomai, ADEOS
- KURT: The Kansas University Real-Time Linux

https://www.osadl.org/RTLWS-1999.rtlws-1999.0.html

Outline

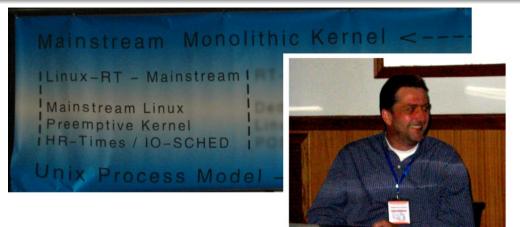
Introduction

- 2 Alternatives for Real-Time with Linux Domain
- 3 Fully-Preemptive Patches for Linux Kernel
- 4 Latency Testing
- 5 Fully-Preemptive Patches Reached Mainline Linux Kernel
- 6 More Real-Time Chalenges for GNU/Linux
- Sources and Further Reading

ヘロト ヘロト ヘヨト

э

8-th Real Time Linux Workshop – Lanzhow University (Year 2006)


CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience

8-th RTLWS – RT Alternatives Debate (Year 2006)

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience

Alternatives – Mainline Linux Kernel Change to RTOS (Year 2006)

Fully-Preemptive Mainline Kernnel – Thomas Gleixner (Linutronix)

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience

э

Alternatives – Dual Kernel – RT Linux (Year 2006)

LT Linux – Nicholas Mc Guire (OpenTech)

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience

イロト イボト イヨト イヨト

Alternatives – RTAI/ADEOS (Year 2006)

IRTAI/ADEOS Interrupt Pipeline I

Domain abstraction Linux Root Domain Domains in Kernel Space

RTAI/ADEOS – professor Roberto Bucher (University of Applied Sciences of Southern Switzerland – SUPSI)

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience

Alternatives – Hypervisor Xtratum (Year 2006)

イロト イヨト イヨト イヨ

Xtratum – Ismael Ripoll (Universidad Politecnica de Valencia – UPVLC)

Alternatives – Hypervisor L4 and L4 RTOS Domain (Year 2006)

IL4/Fiasco - Microkernel

Linux independent Microkernel L4Linux Guest OS IAII Servers in User-Space

OS-Level Partitioning

イロト イヨト イヨト イヨ

L4 Fiasco – professor Herman Haertig (Technical University Dresden)

Outline

Introduction

2 Alternatives for Real-Time with Linux Domain

3 Fully-Preemptive Patches for Linux Kernel

- 4 Latency Testing
- 5 Fully-Preemptive Patches Reached Mainline Linux Kernel
- 6 More Real-Time Chalenges for GNU/Linux
- Sources and Further Reading

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience

イロト イボト イヨト イヨト

э

Fully-Preemptive Linux Kernel

Realtime is not as fast as possible - realtime is as fast as specified – Doug Niehaus, Summer 2001

- More attempts to run RT task parallel to Linux base on same CPU (RT-Linux, RTAI) existed. But around 2001 and 2006 KURT/KUPS project tries to make whole kernel real-time. Work followed by Timesys, Thomas Gleixner, Ingo Molnar and OSADL.org.
- The main idea behind changing Linux kernel to RTOS is to use already present support for multiple cores SMP and provide to system as many virtual CPUs as there are running threads/task.
- Realized by replacement of spin-lock synchronization by RT mutexes. redefinition of spin_lock/spin_unlock, spin_lock_irqsave/spin_unlock_irqrestore to use struct rt_mutex instead of atomic variables based lock

・ロット (雪) () () () ()

Linux Kernel Development

- 1991-01-05 Linus Torvalds bought IBM PC
- Linus informs about intent to write a kernel for fun
- 1991-08-25 version 0.01 published on Internet
- 1994 v1.0 only single i386 CPU, no kernel preemption
- 1996 v2.0 SMP for applications, BKL (Big Kernel Lock) for kernel
- 1999 v2.2 spinlocked critical sections, m68k a PowerPC
- 2001 v2.4 ISA PnP, USB, PC Cards, PA-RISC, LVM, RAID, ext3, Bluetooth
- 2003 v2.5.2 ultra-scalable O(1) SMP and UP scheduler
- 2003 v2.5.4 PREEMPT kernel option, preemptible outside critical sections
- 2003 v2.5.37-mm1 Read-Copy Update infrastructure, Paul E. McKenney
- 2003 v2.6 mainline µClinux, ARM and more, PAE, ALSA, preemption, Native POSIX Thread Library, Futex, latter FUSE, JFS, XFS, ext4, robust mutex, priority inheritance mutex, high resolution timers

The First Mainline Accepted Patches from the RT Project

- CONFIG_PREEMPT_RT separate patches, spinlock \rightarrow RT-mutex, removal BKL, IRQ \rightarrow threads, preemptible RCU
- 2004 v2.6.9 Sven-Thorsten Dietrich (MontaVista) announces Real Time Kernel
- 2004 Ingo Molnar and Thomas Gleixner joined on realtime preempt patches
- 2005 v2.6.11 Generic Interrupt subsystem
- 2006 v2.6.16 RT-Mutex (Thomas Gleixner), Priority Inherintance, PI-Futex, Mutexes, RT-mutex implementation design documentation (Steven Rostedt), Lockdep,

the first alternative production ready Preempt-RT release

- 2007 v2.6.21 Generic timekeeping, High resolution timers, Tickless idle
- 2007 v2.6.23 mainline switch to Completely Fair Scheduler (CFS)
- 2008 v2.6.27 Tracing
- 2009 v2.6.32 Preemptible RCU, Threaded interrupts, Raw Spinlocks
- 2010 v2.6.37 RT maintenance mode

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э.

Linux Kernel Development

- 2011 v2.6.39 "BKL: That's all, folks" in mainline kernel
- 2016 v4.9 LF Realtime Linux project, Timer wheel rework
- 2017 v4.14 CPU hotplug rework
- 2018 v4.19 Tree wide cleanup of locking constructs
- 2019 v5.4 FPU, stacktrace, timers support for RT, Introduction of CONFIG_PREEMPT_RT into mainline
- 2020 v5.10 BPF support for RT, migration control and high-mem cleanup, seqcount rework, in_interrupt() rework
- 2021 v5.15 First batch of printk() related work, RT locking primitives
- 2022 v6.1 Network consolidation, Further prink() work
- 2023 v6.6 Continue prink() rework, Preparation of serial drivers
- 2024 v6.11 Again printk() waits for the final bits

Fully-Preemptive Patches for Linux Kernel

Linux Real-Time Thread Attributes Preparation

pthread_attr_t attr; struct sched_param schparam;

```
/* Initialize thread attributes by default parameters */
pthread_attr_init(&attr);
```

/* The scheduling policy is applied to the started thread */
pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED);

/* Choice of the desired scheduling policy */
pthread_attr_setschedpolicy(&attr, SCHED_FIF0);

/* Specify the thread priority in the given policy range */
schparam.sched_priority = sched_get_priority_max(SCHED_FIFO) - 10;

/* Setup scheduling policy in the thread create attributes */
pthread_attr_setschedparam(&attr, &schparam);

Linux Real-Time Thread Start

Lock whole program in the memory mlockall(MCL_FUTURE | MCL_CURRENT);

```
Start RT thread - start_routine()
```

```
/* Create thread with parameters specified */
pthread_create(thread, &attr, start_routine, arg);
```

```
/* Release resources used to build parameters */
pthread_attr_destroy(&attr);
```

List individual threads with ascending priority ps Hxa --sort rtprio -o pid,policy,rtprio,state,tname,time,command

(日)

Linux Real-Time Sampling Period Implementation

sample_period_nsec = 20*1000*1000; /* period in nanoseconds */
clock_gettime(CLOCK_MONOTONIC, &sample_period_time);

do {

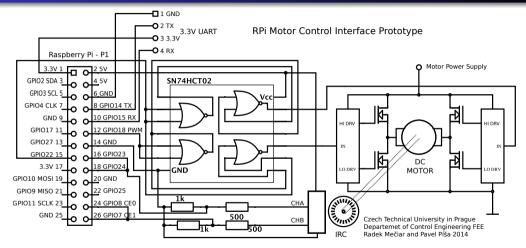
```
/* Compute time for next period invocation */
sample_period_time.tv_nsec += sample_period_nsec;
if (sample_period_time.tv_nsec > 1000*1000*1000) {
   sample_period_time.tv_nsec -= 1000*1000*1000;
   sample_period_time.tv_sec += 1;
}
```

```
/* The place to insert code to execute periodically */
...
} while(1);
```

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э.

Fully-Preemptive Patches for Linux Kernel


Ensure Transition to the Safe State in Case of User Break or Error

```
/* Stop actuators in the case of error */
void stop_motor(void)
ł
 /* Place to put code for technology stop */
}
/* Signal handler and program termination in case of error */
void sig_handler(int sig)
ſ
  stop_motor();
 exit(1):
}
. . .
  struct sigaction sigact;
 memset(&sigact, 0, sizeof(sigact));
  sigact.sa_handler = sig_handler;
  sigaction(SIGINT, &sigact, NULL);
  sigaction(SIGTERM, &sigact, NULL);
```

・ロット (雪) () () () ()

з.

PWM and GPIO Only Based DC Motor PRi Interfacing

As simple as possible

• Four NOR gates (SN74HCT02) and H-bridge (L6203)

Example of PSD (PID) Controller for DC Motor Control

/* Control error, difference between requested and measured state, computation */
err = (pos_req - actual_pos);

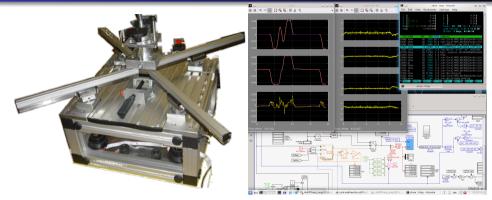
```
/* Accumulator of control error */
ctrl_i_sum += err * ctrl_i;
```

```
/* Control action computation */
action = ctrl_p * err + /* proportional component */
    ctrl_i_sum + /* "integration" component */
        /* differential/"derivative" component */
        ctrl_d * (err - ctrl_err_last);
```

/* Remember the current error for next differential component computation */
ctrl_err_last = err;

/* Scale adjustment for computation in the fixed point arithmetic */
rpi_bidirpwm_set(action >> 8);

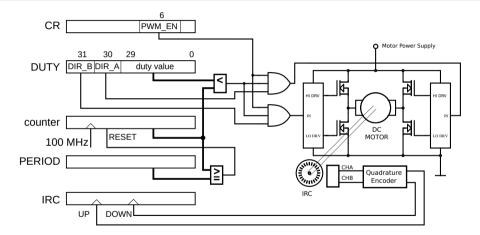
https://github.com/ppisa/rpi-rt-control/tree/master/appl/rpi_simple_dc_servo


Or Use Some Rapping Control Applications Development System

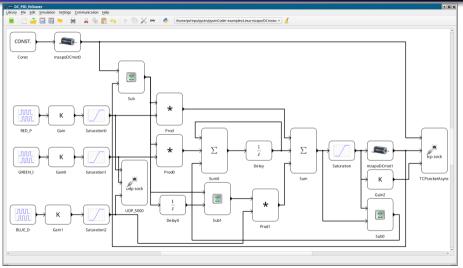
- pysimCoder (started by Roberto Bucher) https://github.com/robertobucher/pysimCoder https://github.com/robertobucher/pysimCoder-examples
- $Matlab^{()}$ Simulink⁽⁾
 - Simulink Embedded Coder target for Linux http://lintarget.sourceforge.net/ https://github.com/aa4cc/ert_linux
 - Matlab/Simulink model for Xilinx Zynq and MZ_APO DC and PMSM peripherals

https://github.com/aa4cc/zynq-rt-control/

・ 同 ト ・ ヨ ト ・ ヨ ト


x86 Linux ERT and Parallel Kinematic Robot Control

- $\bullet\,$ 4 DC motors, 4 incremental encoders, other I/Os
- Presented at Embedded world 2014
- Sampling period 1 ms but complex computations
- More reliable that previously used Windows target


イロト イボト イヨト イヨト

DC Motor Control for Education, This Time on Zynq FPGA

https://gitlab.fel.cvut.cz/canbus/zynq/zynq-can-sja1000-top/-/tree/master/system/ip/ dcsimpledrv_1.0 Fully-Preemptive Patches for Linux Kernel

pysimCoder Servo Control ("Steer by Wire") on Xylinx Zynq MZ_APO Kit

https://github.com/robertobucher/pysimCoder-examples

Outline

Introduction

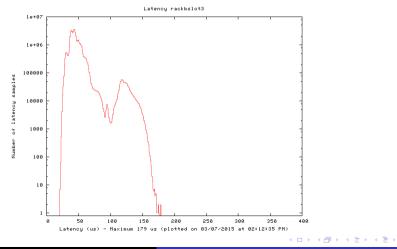
- 2 Alternatives for Real-Time with Linux Domair
- 3 Fully-Preemptive Patches for Linux Kernel
- 4 Latency Testing
- 5 Fully-Preemptive Patches Reached Mainline Linux Kernel
- 6 More Real-Time Chalenges for GNU/Linux
- Sources and Further Reading

A D F A B F A B F A B F

OSADL QA Farm Real-Time

 Open Source Automation Development Lab – long term testing and Quality Assurance Realtime Farm https:

//www.osadl.org/OSADL-QA-Farm-Real-time.linux-real-time.0.html

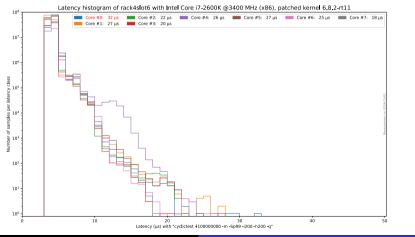

- Latest available RT-Preempt https://www.kernel.org/pub/linux/kernel/projects/rt/
- Maximal under about 40 µsec on powerful SMP x86 systems
- But even on less powerfull ARM 32-bit systems usually 200 µsec

(4回) (4 日) (4 日)

Latency Testing

RPi 3.18.7-rt2 Latency Plot (2015)

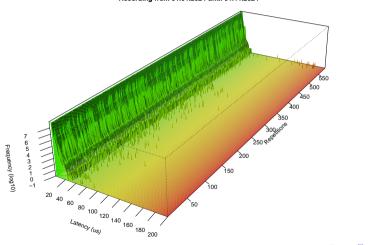
OSADL.org – OSADL.org QA Farm Realtime – BCM2835 rack-b-slot-3 cyclictest -I50000000 -m -n -a0 -t1 -p99 -i400 -h400 -q


CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience

э

Latency Testing

Intel Core i7-2600K @3400 MHz, kernel 6.2.8-rt11 Latency Plot (2024)


OSADL.org – OSADL.org QA Farm Realtime – rack-4-slot-6 cyclictest -100000000 -m -Sp99 -i200 -h200 -q

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience

Latency Testing

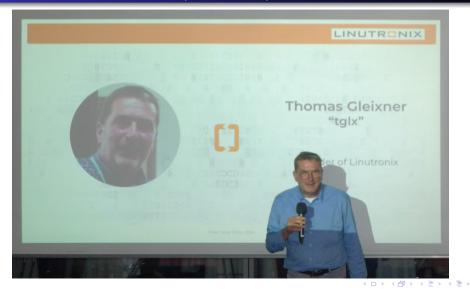
Intel Core i7-2600K @3400 MHz, kernel 6.2.8-rt11 Long Term (2024)

System in rack #4, slot #6 Recording from 01.01.2024 until 01.11.2024

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience

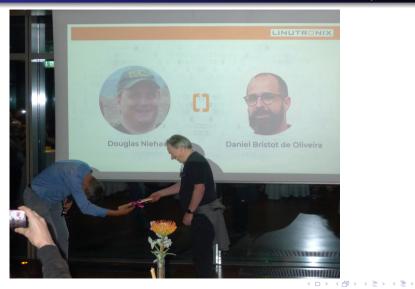
イロト イボト イヨト イヨト

э


Outline

Introduction

- 2 Alternatives for Real-Time with Linux Domair
- 3 Fully-Preemptive Patches for Linux Kernel
- 4 Latency Testing
- 5 Fully-Preemptive Patches Reached Mainline Linux Kernel
- 6 More Real-Time Chalenges for GNU/Linux
- Sources and Further Reading


A D F A B F A B F A B F

RT Event – Thomas Gleixner (Year 2024)

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience

RT Event – RT Enablement Patch Passed to Linus Torvalds (Year 2024)

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience

RT Event – RT Enablement Patch Passed to Linus Torvalds (Year 2024)

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience

RT Event – The Golden Patch for 6.12 Kernel (Year 2024)

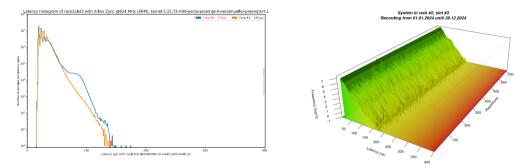
CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ● ○ ○ ○ ○

RT Event – Linus Torvalds and Thomas Gleixner (Year 2024)

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience

Outline


Introduction

- 2 Alternatives for Real-Time with Linux Domain
- 3 Fully-Preemptive Patches for Linux Kernel
- 4 Latency Testing
- 5 Fully-Preemptive Patches Reached Mainline Linux Kernel
- 6 More Real-Time Chalenges for GNU/Linux
- Sources and Further Reading

A D F A D F A D F A D F

PREEMPT_RT and OSADL QA Farm on Real-time

ARM Xilinx Zync @624 MHz, 5.15.72-rt48, rack 2, slot 3 cyclictest -1100000000 -m -Sp99 -i200 -h400 -q

100 million samples per plot, performance governor, duration 5 hours, 33 minutes

https://www.osadl.org/OSADL-QA-Farm-Real-time.linux-real-time.0.html

・ロト ・日ト ・ヨト

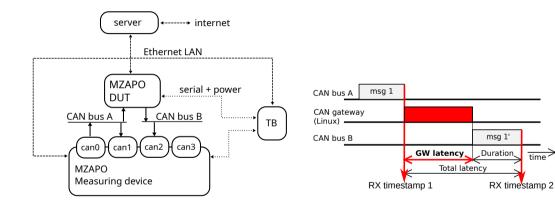
Communication Latency is Critical Often Too

- OSADL.org runs networking latency benchmarks as well
- CTU developed on Volkswagen contract multiple systems to evaluate CAN bus latencies
- CAN drivers on x86 (LinCAN, SocketCAN), MPC5200 (LinCAN, SocketCAN, RTEMS) evaluation
- Linux kernel CAN gateway evaluation for PREEMPT_RT and mainline kernels under different loads and built conditions
- Linux kernel CAN frames processing overhead evaluation when different system calls are used (rtems kernel, read-write, readnb-write, readbusy-write, mmap-mmap, mmap-write, mmapbusy-mmap, mmapbusy-write, readnb-mmap, readbusynoirq-write, mmsg-mmsg)

for complete report see Performance evaluation of Linux CAN-related system calls by M. Sojka and P. Pisa Czech Technical University in Prague (2014) report

ъ

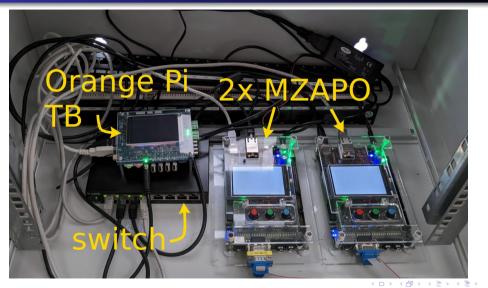
Current CAN Latency Testing Initiative


- Use CTU CAN FD IP Core (10 nsec timestamping sychronized over 4 channels on Zynq MZ_APO)
- Prepare system to run daily test on mainlne and RT_PREEMPT development kernels
- Timestamping code implemented by Matej Vasilevski in frame of his thesis https://dspace.cvut.cz/bitstream/handle/10467/101450/ F3-DP-2022-Vasilevski-Matej-vasilmat.pdf
- Work on automation and presentation of results on web in a frame of Pavel Hronek's thesis

https://dspace.cvut.cz/bitstream/handle/10467/109308/

F3-BP-2023-Hronek-Pavel-CAN-Latester-Automation.pdf

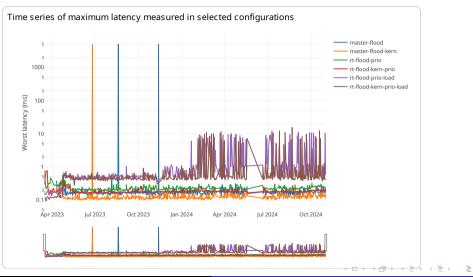
• All sources, drivers and documentation for CTU OTREES CAN related projects and testing on Linux and RTEMS is available at https://canbus.pages.fel.cvut.cz/


CAN Gateway Latency Definition

A D > A B > A B > A B >

3

CAN Gateway Latency Tester Cabinet



CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience

ъ

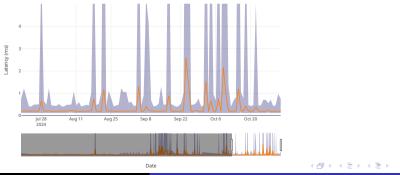
CAN Latency Tester – Daily Results

Overview Inspect Compare

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience

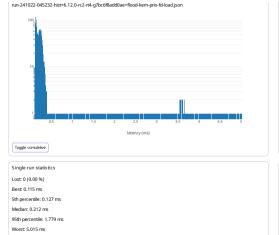

CAN Latency Tester – Inspection

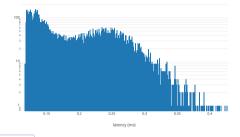
RT, Under Load, RT priority set, Flood, CAN FD


Overview Inspect Compare

Omaster •R	r			
🛛 Under load	🖾 RT priority set	🖾 Kernel GW	☑ Flood	🖾 CAN FD

Gateway latency

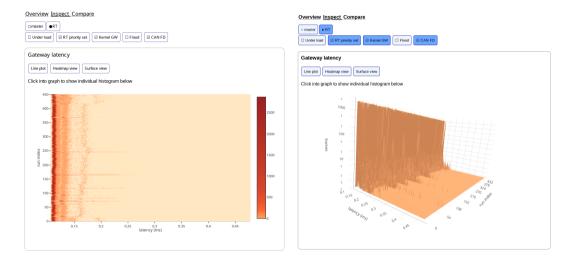

Click into graph to show individual histogram below



CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience

= nar

CAN Latency Tester – Inspection – RT Bad, RT OK

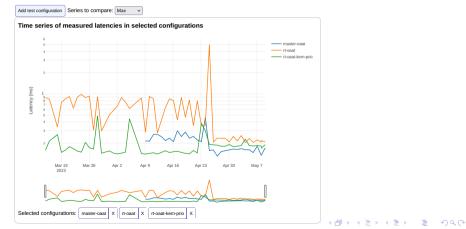


Toggle cumulative

Single run statistics	
Lost: 0 (0.00 %)	
Best: 0.117 ms	
5th percentile: 0.121 ms	
Median: 0.18 ms	
95th percentile: 0.297 ms	
Worst: 0.426 ms	

run-241029-045308-hist+6.12.0-rc4-rt6-ga4680e452f4f+flood-kern-prio-fd-load.json

CAN Gateway Latency – Heatmap and Surface


CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience

▲□▶▲□▶▲□▶▲□▶ □ のQ@

CAN Gateway Latency – Compare

CAN Latency tester

Overview Inspect Compare

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience

Outline

Introduction

- 2 Alternatives for Real-Time with Linux Domain
- 3 Fully-Preemptive Patches for Linux Kernel
- 4 Latency Testing
- 5 Fully-Preemptive Patches Reached Mainline Linux Kernel
- 6 More Real-Time Chalenges for GNU/Linux

Sources and Further Reading

ヘロト ヘロト ヘヨト

Previous Presentations

• InstallFest 2015

Is Raspberry Pi Usable for Industrial and Robotic Applications? http://installfest.cz/if15/slides/pisa_rpi.pdf

• LinuxDays 2015

Linux, RPi and other HW for DC and Brushless/PMSM Motor Control $\tt https:$

//www.linuxdays.cz/2015/video/Pavel_Pisa-Rizeni_stejnosmernych_motoru.pdf

• LinuxDays 2016

Processor Systems, GNU/Linux and Control Applications https://www.linuxdays.cz/2016/video/Pavel_Pisa-Procesorove_systemy_a_nejen_ GNU_Linux_v_ridicich_aplikacich.pdf

• InstallFest 2017

GNU/Linux and FPGA in Real-time Control Applications https://installfest.cz/if17/slides/so_t2_pisa_realtime.pdf

э.

Related Articles

- Píša, P., Vacek, F.: Open Source Components for the CAN Bus, 5-th RTLWS, 2003
- Píša, P., Lisový, R.:COMEDI and UIO drivers for PCI Multifunction Data Acquisition and Generic I/O Cards and Their QEMU Virtual Hardware Equivalents, 13-th RTLWS, 2011, drivers in mainline UIO, COMEDI
- Píša, P., Smolík, P., Fanda, F., Boháček, M., Štefan, J., Němeček, P.: Process Data Connection Channels in uLan Network for Home Automation and Other Distributed Applications, 13-th RTLWS, 2011, related to uLAN project
- Lenc, M., Píša, P., and Bucher, R.: pysimCoder Open-Source Rapid Control Prototyping for GNU/Linux and NuttX, In: 2023 24th International Conference on Process Control (PC), Strbske Pleso, Slovakia, 2023, pp. 102-107 DOI: 10.1109/PC58330.2023.10217596
- Píša, P.; Hronek, P.; Vasilevski, M.; Novák, J.: Continuous CAN Bus Subsystem Latency Evaluation and Stress Testing on GNU/Linux-Based Systems, In: embedded world Conference 2024. Haar: WEKA FACHMEDIEN GmbH, 2024. p. 77-82. ISBN 978-3-645-50199-6
- Lenc, M.; Píša, P.: Scheduling of CAN frame transmission when multiple FIFOs with assigned priorities are used in RTOS drivers, international CAN Conference, CAN in Automation, 2024

Information Sources

- It is really time to celebrate!
 25th anniversary of RTLWS
 20th anniversary of Preempt RT
 Thomas Gleixner and Heinz Egger
 https://www.linutronix.de
- https://wiki.linuxfoundation.org/realtime/start
- https://www.osadl.org
- https://canbus.pages.fel.cvut.cz/
- https://gitlab.fel.cvut.cz/otrees/org/-/wikis/home theses, talks, references
- https://social.kernel.org/ppisa
- Photo © Pavel Pisa

不同 とう ヨン とうと