Linux Kernel Mainline Real-Time History, Support and
Experience Based on Robotic and Automotive Projects

Pavel Pisa
pisa@fel.cvut.cz , ppisa@pikron.com

Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Control Engineering
https://fel.cvut.cz/en

PiKRON s.r.o
https://www.pikron.com/

2025-02-02
FOSDEM 2025

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience


https://fel.cvut.cz/en
https://www.pikron.com/

Content of Presentation

@ Introduction

e Alternatives for Real-Time with Linux Domain

© Fully-Preemptive Patches for Linux Kernel

e Latency Testing

e Fully-Preemptive Patches Reached Mainline Linux Kernel
@ More Real-Time Chalenges for GNU/Linux

e Sources and Further Reading

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Introduction

Outline

@ Introduction

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Introduction

Author’s Point of View Base and Disclaimer

1988 — practice at Development Wokshop of Czech Academy of Sciences, obtained
Unix root account on Philips Microcontroller Development System (PMDS 85)
1990 — became responsible for HPLC laboratory instruments firmware for my
father's projects
1990 — started study at Czech Technical University in Prague and with Petr
Porazil (schoolmate) overtaken all electrical HW and SW development
1992 — PiKRON s.r.o0. foundation, bought own development and continued
projects there due to collapse of the state owned Laboratory Instruments Prague
around 1993 — introduced by schoolmates to set of diskettes (Slackware
GNU/Linux, kernel 1.1.18)
interest to use Linux for control application

e our own RS-485 based protocol to control instruments by PC UART and own

Intel 80510 based card (AA_SIO)
e SJA1000 controller integrated to AA_SIO as well
e parallel port GPIO and stepper and DC motors applications

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Introduction

RS-385, uLAN, CAN Bus, LinCAN and AA_SIO ISA Addon Card (1997)

e 1991 RS-485 uLAN
https://ulan.sourceforge.net/

e MS DOS and Intel 8051

e 1994 Linux till today, but out of mainline

o later Windows NT 3.5, WMD Windows 2000
... Windows 11

e UART, ISA, PCIl, USB, embedded systems
NXP LPC, NuttX

e CAN bus experiments on AA_SIO
e 2003 LinCAN driver

https://ortcan.sourceforge.net/lincan/

e used by more companies and in the wild even

in 2020 ;
. e 2025 LinCAN based CAN FD
. b-ut-fo-cus and help to SocketCAN (drivers stack mainlined into RTEMS
bittiming)

https://www.rtems.org/

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience


https://ulan.sourceforge.net/
https://ortcan.sourceforge.net/lincan/
https://www.rtems.org/

Introduction
Need for Real-Time

e The ISO/IEC 2382 standard defines "Real-Time" as the capability of a system to
respond to inputs or events within a specified time frame, known as deadline.
e Hard-Realtime systems — guarantee deterministic behavior, violation of the
deadline — catastrophic consequences (defined by ISO 26262, IEC 61508,

SIL, ASIL, etc.)
e Soft-Realtime systems — can violate deadline occasionally — quality of

service degradation
e Hard Real-Time — used in control systems, avionics, automotive, industrial
production, robotics, medical, robotic surgery, etc.
e Soft Real-Time — on-line video capture, processing, delivery, audio including on
stage audio mixing, etc.

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Introduction

The First Real-Time Linux Workshop — RTLWS (Year 1999)

e Need for data acquisition and 10 cards control in
real-time

e Initiated by Peter Wurmsdobler (Centre de Transfert
des Microtechniques) developing micro-piezo-electric
testing rig (MicroCoupleMetre) for torque testing

e Nicholas Mc Guire, Peter Wurmsdobler, Stefan Jakubek

e FSMLab's RTlinux (Victor Yodaiken) — absorbed by
WindRiver

e DIAPM Dipartimento di Ingegneria Aerospaziale,
Politecnico di Milano

e DIAPM's RTAI — RTAI, Xenomai, ADEOS

e KURT: The Kansas University Real-Time Linux

https://www.osadl.org/RTLWS-1999.rtlws-1999.0.html

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience


https://www.osadl.org/RTLWS-1999.rtlws-1999.0.html

Alternatives for Real-Time with Linux Domain

Outline

© Alternatives for Real-Time with Linux Domain

: Pavel Pisa Linux Real-Time History and Projects Experience



Alternatives for Real-Time with Linux Domain

8-th Real Time Linux Workshop — Lanzhow University (Year 2006)

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Alternatives for Real-Time with Linux Domain

8-th RTLWS — RT Alternatives Debate (Year 2006)

IDomain abstraction | Spatial and Temporal Psmllonlng
|Llnux Root Domain |L|nu Root Domam

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Alternatives for Real-Time with Linux Domain

Alternatives — Mainline Linux Kernel Change to RTOS (Year 2006)

Fully-Preemptive Mainline Kernnel — Thomas Gleixner (Linutronix)

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Alternatives for Real-Time with Linux Domain

Alternatives — Dual Kernel — RT Linux (Year 2006)

LT Linux — Nicholas Mc Guire (OpenTech)

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Alternatives for Real-Time with Linux Domain

Alternatives — RTAI/ADEOS (Year 2006)

RTAI/ADEOS — professor Roberto Bucher (University of Applied Sciences of Southern
Switzerland — SUPSI

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Alternatives for Real-Time with Linux Domain

Alternatives — Hypervisor Xtratum (Year 2006)

Xtratum — Ismael Ripoll (Universidad Politecnica de Valencia — UPVLC)

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Alternatives for Real-Time with Linux Domain

Alternatives — Hypervisor L4 and L4 RTOS Domain (Year 2006)

L4 Fiasco — professor Herman Haertig (Technical University Dresden)

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Fully-Preemptive Patches for Linux Kernel

Outline

© Fully-Preemptive Patches for Linux Kernel

: Pavel Pisa Linux Real-Time History and Projects Experience



Fully-Preemptive Patches for Linux Kernel

Fully-Preemptive Linux Kernel

Realtime is not as fast as possible - realtime is as fast as specified — Doug
Niehaus, Summer 2001

e More attempts to run RT task parallel to Linux base on same CPU (RT-Linux,
RTAI) existed. But around 2001 and 2006 KURT/KUPS project tries to make
whole kernel real-time. Work followed by Timesys, Thomas Gleixner, Ingo Molnar
and OSADL.org.

e The main idea behind changing Linux kernel to RTOS is to use already present
support for multiple cores SMP and provide to system as many virtual CPUs as
there are running threads/task.

e Realized by replacement of spin-lock synchronization by RT mutexes. redefinition
of spin_lock/spin_unlock, spin_lock_irgsave/spin_unlock_irgrestore to use struct
rt_mutex instead of atomic variables based lock

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Fully-Preemptive Patches for Linux Kernel
Linux Kernel Development

e 1991-01-05 Linus Torvalds bought IBM PC

e Linus informs about intent to write a kernel for fun

e 1991-08-25 — version 0.01 published on Internet

e 1994 — v1.0 — only single i386 CPU, no kernel preemption

e 1996 — v2.0 — SMP for applications, BKL (Big Kernel Lock) for kernel

e 1999 — v2.2 — spinlocked critical sections, m68k a PowerPC

e 2001 — v2.4 — ISA PnP, USB, PC Cards, PA-RISC, LVM, RAID, ext3, Bluetooth
e 2003 — v2.5.2 — ultra-scalable O(1) SMP and UP scheduler

e 2003 — v2.5.4 — PREEMPT kernel option, preemptible outside critical sections
e 2003 — v2.5.37-mm1 — Read-Copy Update infrastructure, Paul E. McKenney

e 2003 — v2.6 — mainline pClinux, ARM and more, PAE, ALSA, preemption, Native
POSIX Thread Library, Futex, latter FUSE, JFS, XFS, ext4, robust mutex, priority
inheritance mutex, high resolution timers

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Fully-Preemptive Patches for Linux Kernel

The First Mainline Accepted Patches from the RT Project

e CONFIG_PREEMPT_RT separate patches, spinlock — RT-mutex, removal BKL,
IRQ — threads, preemptible RCU

e 2004 - v2.6.9 — Sven-Thorsten Dietrich (MontaVista) announces Real Time Kernel
e 2004 — Ingo Molnar and Thomas Gleixner joined on realtime preempt patches
e 2005 — v2.6.11 — Generic Interrupt subsystem

e 2006 — v2.6.16 — RT-Mutex (Thomas Gleixner), Priority Inherintance, Pl-Futex,
Mutexes, RT-mutex implementation design documentation (Steven Rostedt),
Lockdep,
the first alternative production ready Preempt-RT release

e 2007 — v2.6.21 — Generic timekeeping, High resolution timers, Tickless idle
e 2007 — v2.6.23 — mainline switch to Completely Fair Scheduler (CFS)

e 2008 — v2.6.27 — Tracing

e 2009 — v2.6.32 — Preemptible RCU, Threaded interrupts, Raw Spinlocks

e 2010 — v2.6.37 — RT maintenance mode

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Fully-Preemptive Patches for Linux Kernel
Linux Kernel Development

e 2011 — v2.6.39 — "BKL: That's all, folks” in mainline kernel

e 2016 — v4.9 — LF Realtime Linux project, Timer wheel rework
e 2017 — v4.14 — CPU hotplug rework

e 2018 — v4.19 — Tree wide cleanup of locking constructs

e 2019 — v5.4 — FPU, stacktrace, timers support for RT, Introduction of
CONFIG_PREEMPT_RT into mainline

e 2020 — v5.10 — BPF support for RT, migration control and high-mem cleanup,
seqcount rework, in_interrupt() rework

e 2021 — v5.15 — First batch of printk() related work, RT locking primitives
e 2022 — v6.1 — Network consolidation, Further prink() work

e 2023 — v6.6 — Continue prink() rework, Preparation of serial drivers

e 2024 — v6.11 — Again printk() waits for the final bits

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Fully-Preemptive Patches for Linux Kernel

Linux Real-Time Thread Attributes Preparation

pthread_attr_t attr;
struct sched_param schparam;

/* Inittalize thread attributes by default parameters */
pthread_attr_init(&attr);

/* The scheduling policy %s applied to the started thread */
pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED) ;

/* Choice of the desired scheduling policy */
pthread_attr_setschedpolicy(&attr, SCHED_FIFO);

/* Spectify the thread priority in the given policy range */
schparam.sched_priority = sched_get_priority_max(SCHED_FIF0) - 10;

/% Setup scheduling policy in the thread create attributes */
pthread_attr_setschedparam(&attr, &schparam);

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Fully-Preemptive Patches for Linux Kernel

Linux Real-Time Thread Start

Lock whole program in the memory
mlockall (MCL_FUTURE | MCL_CURRENT);

Start RT thread — start_routine()

/* Create thread with parameters specified */
pthread_create(thread, &attr, start_routine, arg);

/* Release resources used to butld parameters */
pthread_attr_destroy(&attr);

List individual threads with ascending priority

ps Hxa --sort rtprio -o pid,policy,rtprio,state,tname,time,command

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Fully-Preemptive Patches for Linux Kernel

Linux Real-Time Sampling Period Implementation

sample_period_nsec = 20*%1000%1000; /* period in nanoseconds */
clock_gettime (CLOCK_MONOTONIC, &sample_period_time);

do {
/* Compute time for next period invocation */
sample_period_time.tv_nsec += sample_period_nsec;
if (sample_period_time.tv_nsec > 1000%1000%1000) {
sample_period_time.tv_nsec -= 1000*1000%1000;
sample_period_time.tv_sec += 1;

}

clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME,
&sample_period_time, NULL);

/* The place to insert code to execute periodically */

} while(1);

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Fully-Preemptive Patches for Linux Kernel

Ensure Transition to the Safe State in Case of User Break or Error

/* Stop actuators in the case of error */
void stop_motor(void)
{

/* Place to put code for technology stop */
}

/* Signal handler and program termination in case of error */
void sig_handler(int sig)
{

stop_motor () ;

exit(1);

struct sigaction sigact;

memset (&sigact, 0, sizeof(sigact));
sigact.sa_handler = sig_handler;
sigaction(SIGINT, &sigact, NULL);
sigaction(SIGTERM, &sigact, NULL);

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Fully-Preemptive Patches for Linux Kernel

PWM and GPIO Only Based DC Motor PRi Interfacing

—11GND
——O0 2 TX .
3.3V UART RPi Motor Control Interface Prototype
0333V
Raspberry Pi - P1 O4 Rx
3.3v1 O o 5V = QO Motor Power Supply
GPIO2SDA3 | § o ]45V SN74HCT02
GPIO3SCLS |5 oJ6.GND Ve
GPIO4 CLK 7__0 o 8 GPIO14 TX
GND 9__0 o 10 GPIO15 RX ] DAY
GPIO17 11__0 12 GPIO18 PW
GPI027 13__0 fo 14 GND .
GPI022 15 0 O 16 GPIO23 ]
33v17 |y oJi8 Grio2a GND LoDRY
GPIO10 MOSI 19__0 0_2_0 GND —l
GPIO9 MISO 21 22 GPI025 st
GPIO11 SCLK 23 [© 9 24 GPIO8 CEO 1k | | CHA
—TO O 1 1 |
GND 25—-0 O 26 GPIO7 Q1 500 CHB Czech Technical University in Prague
T 00 Departemet of Control Engineering FEE
IRC Radek Meciar and Pavel Pisa 2014

As simple as possible
e Four NOR gates (SN74HCTO02) and H-bridge (L6203)

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Fully-Preemptive Patches for Linux Kernel

Example of PSD (PID) Controller for DC Motor Control

/* Control error, difference between requested and measured state, computation */
err = (pos_req - actual_pos);

/* Accumulator of control error */
ctrl_i_sum += err * ctrl_i;

/* Control action computation */
action = ctrl_p * err + /* proportional component */
ctrl_i_sum + /* "integration” component */
/* differential/"derivative" component */
ctrl_d * (err - ctrl_err_last);

/* Remember the current error for next differential component computation */
ctrl_err_last = err;

/* Scale adjustment for computation in the fized point arithmetic */
rpi_bidirpwm_set(action >> 8);

https://github.com/ppisa/rpi-rt-control/tree/master/appl/rpi_simple_dc_servo

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience


https://github.com/ppisa/rpi-rt-control/tree/master/appl/rpi_simple_dc_servo

Fully-Preemptive Patches for Linux Kernel

Or Use Some Rapping Control Applications Development System

e pysimCoder (started by Roberto Bucher)
https://github.com/robertobucher/pysimCoder
https://github.com/robertobucher/pysimCoder-examples

e Matlab® Simulink®

e Simulink Embedded Coder target for Linux
http://lintarget.sourceforge.net/
https://github.com/aadcc/ert_linux

e Matlab/Simulink model for Xilinx Zynq and MZ_APO DC and PMSM
peripherals
https://github.com/aad4cc/zyng-rt-control/

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience


https://github.com/robertobucher/pysimCoder
https://github.com/robertobucher/pysimCoder-examples
http://lintarget.sourceforge.net/
https://github.com/aa4cc/ert_linux
https://github.com/aa4cc/zynq-rt-control/

Fully-Preemptive Patches for Linux Kernel

x86 Linux ERT and Parallel Kinematic Robot C

3 LTI

e 4 DC motors, 4 incremental encoders, other |/Os
Presented at Embedded world 2014
Sampling period 1 ms but complex computations

More reliable that previously used Windows target

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Fully-Preemptive Patches for Linux Kernel

DC Motor Control for Education, This Time on Zynq FPGA

6
CR | [PWM_EN] ]

© Motor Power Supply
31 30 29 0

DUTY [DIR_BIDIR_A]  duty value |

counter | |
100 MHzl |RESET —
PERIOD | |
IRC | |
uP | pownl

https://gitlab.fel.cvut.cz/canbus/zynq/zynq-can-sjal000-top/-/tree/master/system/ip/
dcsimpledrv_1.0

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience


https://gitlab.fel.cvut.cz/canbus/zynq/zynq-can-sja1000-top/-/tree/master/system/ip/dcsimpledrv_1.0
https://gitlab.fel.cvut.cz/canbus/zynq/zynq-can-sja1000-top/-/tree/master/system/ip/dcsimpledrv_1.0

Fully-Preemptive Patches for Linux Kernel

pysimCoder Servo Control ("Steer by Wire") on Xylinx Zynq MZ_APO Kit

BGE

Ihome/piepolpysimipysimCoder-examplesiLinuxmzaporcmotos « |

REDP Gain Saturationd

/ -
m | ; : ‘{:’“’“‘

Saturation

Saturationt

- TcPsocketAsyne

#
Gdp sock

UDP_5000

Delayo

https://github.com/robertobucher/pysimCoder-examples
CC-BY 2025: Pavel Pisa

Linux Real-Time History and Projects Experience


https://github.com/robertobucher/pysimCoder-examples

Latency Testing

Outline

@ Latency Testing

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



OSADL QA Farm Real-Time

e Open Source Automation Development Lab — long term testing and Quality
Assurance Realtime Farm
https:
//www.osadl.org/0SADL-QA-Farm-Real-time.linux-real-time.0.html

e Latest available RT-Preempt
https://www.kernel.org/pub/linux/kernel/projects/rt/

e Maximal under about 40 psec on powerful SMP x86 systems

e But even on less powerfull ARM 32-bit systems usually 200 psec

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience


https://www.osadl.org/OSADL-QA-Farm-Real-time.linux-real-time.0.html
https://www.osadl.org/OSADL-QA-Farm-Real-time.linux-real-time.0.html
https://www.kernel.org/pub/linux/kernel/projects/rt/

Latency Testing

RPi 3.18.7-rt2 Latency Plot (2015)

OSADL.org — OSADL.org QA Farm Realtime — BCM2835 rack-b-slot-3
cyclictest -150000000 -m -n -a0 -t1 -p99 -i400 -h400 -q

Latency rackhslotd

le+B? T T T T T T T

1e+s | 1

100000 | B

1me80 | B

1000 | B

Humber of latency samples

1E L L L L L L L
[ 58 188 158 L1 258 388 358 EL:1:)
Latency tus) - Maximum 179 us (plotted on B3/87/2615 st B2i12:35 FM)

25: Pavel Pisa Linux Real-Time History and Projects Experience



Latency Testing

Intel Core i7-2600K ©3400 MHz, kernel 6.2.8-rt11 Latency Plot (2024)

OSADL.org — OSADL.org QA Farm Realtime — rack-4-slot-6
cyclictest -100000000 -m -Sp99 -i200 -h200 -q

Latency histogram of rack4slot6 with Intel Core i7-2600K @3400 MHz (x86), patched kernel 6.8.2-rt11

WEN Core #0: 32us MMM Core #2: 22ys MMM Core #4: 26us WM Core #5: 27ys Core #6: 25us WM Core #7: 18us
Core #1: 27ps WM Core #3: 20us

10¢

Number of samples per latency class

—

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Latency Testing

Intel Core i7-2600K ©@3400 MHz, kernel 6.2.8-rt11 Long Term

System in rack #4, slot #6
Recording from 01.01.2024 until 01.11.2024

(ot60) fouanb3:3

: Pavel Pisa

y and Projects Experien



Fully-Preemptive Patches Reached Mainline Linux Kernel

Outline

© Fully-Preemptive Patches Reached Mainline Linux Kernel

: Pavel Pisa Linux Real-Time History and Projects Experience



Fully-Preemptive Patches Reached Mainline Linux Kernel

RT Event — Thomas Gleixner (Year 2024)

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Fully-Preemptive Patches Reached Mainline Linux Kernel

RT Event — RT Enablement Patch Passed to Linus Torvalds (Year 2024)

-

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Fully-Preemptive Patches Reached Mainline Linux Kernel

RT Event — RT Enablement Patch Passed to Linus Torvalds (Year 2024)

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Fully-Preemptive Patches Reached Mainline Linux Kernel

RT Event — The Golden Patch for 6.12 Kernel (Year 2024)

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Fully-Preemptive Patches Reached Mainline Linux Kernel

RT Event — Linus Torvalds and Thomas Gleixner (Year 2024)

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



More Real-Time Chalenges for GNU/

Outline

@ More Real-Time Chalenges for GNU/Linux

: Pavel Pisa Linux Real-Time History and Projects Experience



More Real-Time Chalenges for GNU/Linux

PREEMPT_RT and OSADL QA Farm on Real-time

ARM Xilinx Zync @624 MHz, 5.15.72-rt48, rack 2, slot 3
cyclictest -1100000000 -m -Sp99 -i1200 -h400 —-q

System in rack #2, slot #3
- p Recording from 01.01.2024 until 26.12.2024

 batency histogram of rack2slot3 with Xilinx Zync @624 MHz (ARM), kernel 5.15.72.1t48 yocto-preempt.rt-weidmueller-preempt.rt.1

100 million samples per plot, performance governor, duration 5 hours, 33 minutes

https://www.osadl.org/0SADL-QA-Farm-Real-time.linux-real-time.0.html

25: Pavel Pisa Linux Real-Time History and Projects Experience


https://www.osadl.org/OSADL-QA-Farm-Real-time.linux-real-time.0.html

More Real-Time Chalenges for GNU /Linux

Communication Latency is Critical Often Too

e OSADL.org runs networking latency benchmarks as well

e CTU developed on Volkswagen contract multiple systems to evaluate CAN bus
latencies

e CAN drivers on x86 (LinCAN, SocketCAN), MPC5200 (LinCAN, SocketCAN,
RTEMS) evaluation

e Linux kernel CAN gateway evaluation for PREEMPT_RT and mainline kernels
under different loads and built conditions

e Linux kernel CAN frames processing overhead evaluation when different system
calls are used (rtems kernel, read-write, readnb-write, readbusy-write,
mmap-mmap, mmap-write, mmapbusy-mmap, mmapbusy-write, readnb-mmap,
readbusynoirg-write, mmsg-mmsg)
for complete report see Performance evaluation of Linux CAN-related system calls
by M. Sojka and P. Pisa Czech Technical University in Prague (2014) report

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



More Real-Time Chalenges for GNU/Linux

Current CAN Latency Testing Initiative

e Use CTU CAN FD IP Core (10 nsec timestamping sychronized over 4 channels on
Zynq MZ_APO)

e Prepare system to run daily test on mainlne and RT_PREEMPT development
kernels

e Timestamping code implemented by Matej Vasilevski in frame of his thesis
https://dspace.cvut.cz/bitstream/handle/10467/101450/
F3-DP-2022-Vasilevski-Matej-vasilmat.pdf

e Work on automation and presentation of results on web in a frame of Pavel
Hronek's thesis
https://dspace.cvut.cz/bitstream/handle/10467/109308/
F3-BP-2023-Hronek-Pavel-CAN-Latester-Automation.pdf

e All sources, drivers and documentation for CTU OTREES CAN related projects
and testing on Linux and RTEMS is available at
https://canbus.pages.fel.cvut.cz/

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience


https://dspace.cvut.cz/bitstream/handle/10467/101450/F3-DP-2022-Vasilevski-Matej-vasilmat.pdf
https://dspace.cvut.cz/bitstream/handle/10467/101450/F3-DP-2022-Vasilevski-Matej-vasilmat.pdf
https://dspace.cvut.cz/bitstream/handle/10467/109308/F3-BP-2023-Hronek-Pavel-CAN-Latester-Automation.pdf
https://dspace.cvut.cz/bitstream/handle/10467/109308/F3-BP-2023-Hronek-Pavel-CAN-Latester-Automation.pdf
https://canbus.pages.fel.cvut.cz/

More Real-Time Chalenges for GNU/Linux

CAN Gateway Latency Definition

Ethernet LAN

MZAPO
DUT PR

CAN bus A msg 1 |

CAN bus B

msg 1'

: |
H CAN gateway
CAN lTaus A CANDUSB i . CoN g _

MZAPO
Measuring device

GW latency

Duration

—>

time

Total latency

RX timestamp 1

RX time

stamp 2

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



More Real-Time Chalenges for GNU/Linux

CAN Gateway Latency Tester Cabinet

S 4

Orangeﬁl\zx MZAPO
1B L3

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



More Real-Time Chalenges for GNU

CAN Latency Tester — Daily Results

s master-flood
master-flood-kern

2 —— rt-flood-prio
1000 —— rt-flood-kern-prio
5 —— rt-flood-prio-load

—— rt-flood-kern-prio-load

Worst latency (ms)

5
Apr 2023 Jul 2023 Oct 2023 Jan 2024 Apr 2024 Jul 2024 Oct 2024

L [ P————

: Pavel Pisa i i istory and Projects Experience



More Real-Time Chalenges for GNU /Linux

CAN Latency Tester — Inspection

RT, Under Load, RT priority set, Flood, CAN FD

Overview Inspect Compare
[ OrnasterH ORT ‘

[ [@ Under load l [ @RT pnomyser] [ @ Kemel GW} @ Flood [ [@ CAN FD 1

Gateway latency
[ Line plot [ Heatmap view \ \ Surface wew]

Click into graph to show individual histogram below

Latency (ms)

Jul 28 Aug 11 Aug25 Seps Sep 22 Oct6 Oct20
2024

: Pavel Pisa Linux Real-Time History and Projects Experience



More Real-Time Chalenges for GNU /Linux

CAN Latency Tester — Inspection — RT Bad, RT OK

hist+6.12.0-rc2-td-g; kem-prio-fd-loadjson hist+6.12. ker-prio-fd-load.json
1o
| )
i Hillmm\lﬂlllﬂﬂlll I||“|I M u nmmen
s 1 3 3 ] a 45 s 015 02 025 035 04
latency (ms) latency (ms)
Toggle cumulative Toggle cumuative

Single run statistics Single run statistics
Lost: 0(0.00 %) Lost 0(0.00 %)
Best 0,115 ms Best 0.117 ms
5th percentile: 0.127 ms Sth percentile: 0.121 ms.
Median: 0.212 ms Median: 0.18 ms
95th percentle: 1.779 ms 95th percentile: 0.297 ms
Worst: 5.015 ms Worst: 0.426 ms

Linux Real-Time H




More Real-Time Chalenges for GNU /Linux

CAN Gateway Latency — Heatmap and Surface

Overview Inspect Compare N
Inspect Comp: Overview Inspect Compare
Omaster || @RT
Undertoad | [ @ R prory set | [ @ kerel 6w | [ 1 iood | [ @ caneo
Gateway latency Gateway latency
[ ine ot | [ Heatmap view | [ sutace view m"e -~ [:SMM o
Click into graph to show individual histogram below Click into graph to show individual histogram below

= 1009

latency (ms)

Linux Real-Time H cts Experience




More Real-Time Chalenges for GNU/Linux

CAN Gateway Latency — Compare

CAN Latency tester

Overview Inspect. Compare

Add test configuration | Series to compare: | Max v

Time series of measured ies in igurations

fer-oaat

at

at-kern-prio

Latency (ms)

Mar 19 Mar 26 Apr2 Apro Apr 16 Apr23 Apr 30 May 7
2023

Selected configurations: mastev—uaal‘ x|

foaat X ‘[rmaapkempnu x‘

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Sources and Further Reading

Outline

@ Sources and Further Reading

: Pavel Pisa Linux Real-Time History and Projects Experience



Sources and Further Reading
Previous Presentations

o InstallFest 2015
Is Raspberry Pi Usable for Industrial and Robotic Applications?
http://installfest.cz/if15/slides/pisa_rpi.pdf

e LinuxDays 2015
Linux, RPi and other HW for DC and Brushless/PMSM Motor Control
https:
//www.linuxdays.cz/2015/video/Pavel_Pisa-Rizeni_stejnosmernych_motoru.pdf

e LinuxDays 2016

Processor Systems, GNU/Linux and Control Applications
https://www.linuxdays.cz/2016/video/Pavel_Pisa-Procesorove_systemy_a_nejen_
GNU_Linux_v_ridicich_aplikacich.pdf

o InstallFest 2017

GNU/Linux and FPGA in Real-time Control Applications
https://installfest.cz/if17/slides/so_t2_pisa_realtime.pdf

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience


http://installfest.cz/if15/
http://installfest.cz/if15/slides/pisa_rpi.pdf
https://www.linuxdays.cz/2015/program/
https://www.linuxdays.cz/2015/video/Pavel_Pisa-Rizeni_stejnosmernych_motoru.pdf
https://www.linuxdays.cz/2015/video/Pavel_Pisa-Rizeni_stejnosmernych_motoru.pdf
https://www.linuxdays.cz/2016/program/
https://www.linuxdays.cz/2016/video/Pavel_Pisa-Procesorove_systemy_a_nejen_GNU_Linux_v_ridicich_aplikacich.pdf
https://www.linuxdays.cz/2016/video/Pavel_Pisa-Procesorove_systemy_a_nejen_GNU_Linux_v_ridicich_aplikacich.pdf
https://installfest.cz/if17/program
https://installfest.cz/if17/slides/so_t2_pisa_realtime.pdf

Sources and Further Reading
Related Articles

e Pi%a, P., Vacek, F.:Open Source Components for the CAN Bus, 5-th RTLWS, 2003

e Pi%a, P., Lisovy, R.:COMEDI and UIQO drivers for PCl Multifunction Data Acquisition and
Generic 1/O Cards and Their QEMU Virtual Hardware Equivalents, 13-th RTLWS, 2011,
drivers in mainline UIO, COMEDI

e Pi%a, P., Smolik, P., Fanda, F., Bohacek, M., Stefan, J., Némeg&ek, P.: Process Data
Connection Channels in uLan Network for Home Automation and Other Distributed
Applications, 13-th RTLWS, 2011, related to uLAN project

e Lenc, M., Piga, P., and Bucher, R.: pysimCoder — Open-Source Rapid Control Prototyping
for GNU/Linux and NuttX, In: 2023 24th International Conference on Process Control
(PC), Strbske Pleso, Slovakia, 2023, pp. 102-107 DOI: 10.1109/PC58330.2023.10217596

e Pi%a, P.; Hronek, P.; Vasilevski, M.; Novak, J.: Continuous CAN Bus Subsystem Latency
Evaluation and Stress Testing on GNU/Linux-Based Systems, In: embedded world
Conference 2024. Haar: WEKA FACHMEDIEN GmbH, 2024. p. 77-82. ISBN
978-3-645-50199-6

e Lenc, M.; Pi%a, P.: Scheduling of CAN frame transmission when multiple FIFOs with
assigned priorities are used in RTOS drivers, international CAN Conference, CAN in
Automation, 2024

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience



Sources and Further Reading
Information Sources

e |t is really time to celebrate!
25th anniversary of RTLWS
20th anniversary of Preempt RT
Thomas Gleixner and Heinz Egger
https://www.linutronix.de

e https://wiki.linuxfoundation.org/realtime/start

e https://www.osadl.org

e https://canbus.pages.fel.cvut.cz/

e https://gitlab.fel.cvut.cz/otrees/org/-/wikis/home — theses, talks,
references

e https://social.kernel.org/ppisa
e Photo (©) Pavel Pisa

CC-BY 2025: Pavel Pisa Linux Real-Time History and Projects Experience


https://www.linutronix.de
https://wiki.linuxfoundation.org/realtime/start
https://www.osadl.org
https://canbus.pages.fel.cvut.cz/
https://gitlab.fel.cvut.cz/otrees/org/-/wikis/home
https://social.kernel.org/ppisa

	Introduction
	Alternatives for Real-Time with Linux Domain
	Fully-Preemptive Patches for Linux Kernel
	Latency Testing
	Fully-Preemptive Patches Reached Mainline Linux Kernel
	More Real-Time Chalenges for GNU/Linux
	Sources and Further Reading

