

# **Graph Databases after 15 Years**

– Where Are They Headed?

Gábor Szárnyas

Data Analytics devroom | FOSDEM | 2025-02-01

# About me

2012–2019 **MSc & PhD** 



graphs

2020–2023 **postdoc** 

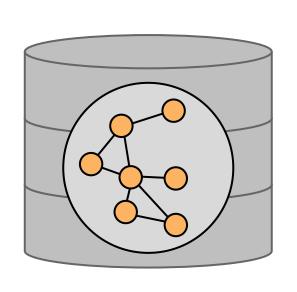


graphs

2023devrel



not graphs



1

graph databases in 15 minutes

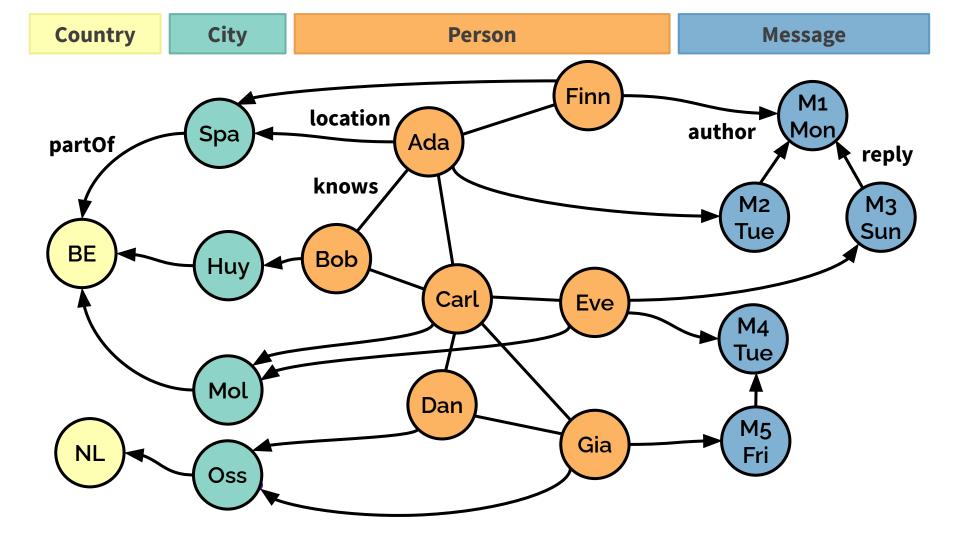
2

new researchnot just for graphs!

 $\left( \mathsf{3} \right)$ 

pointers for benchmarks

# Running example



# **Graph databases**

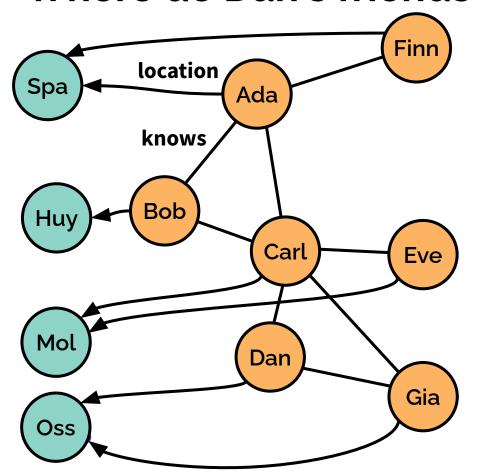


### Fast data processing

No expensive run-time JOINs.

# Join those who left JOINs behind

# Relational databases can't join?



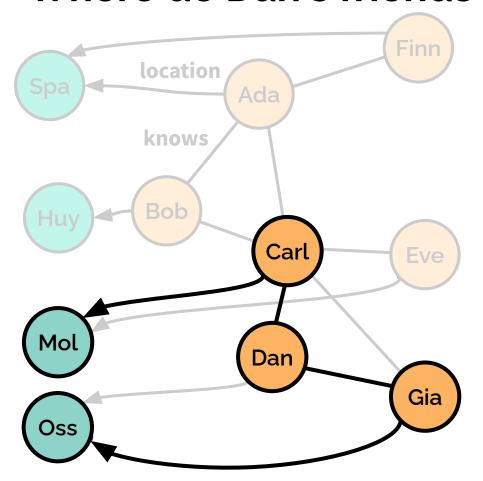
### knows

| p1   | p2   |
|------|------|
| Ada  | Bob  |
| Ada  | Carl |
| Ada  | Finn |
| Bob  | Carl |
| Carl | Dan  |
| Carl | Eve  |
| Carl | Gia  |
| Dan  | Gia  |

 $\bowtie$ 

#### location

| person | city |
|--------|------|
| Ada    | Spa  |
| Bob    | Huy  |
| Carl   | Mol  |
| Dan    | Oss  |
| Eve    | Mol  |
| Finn   | Spa  |
| Gia    | Oss  |



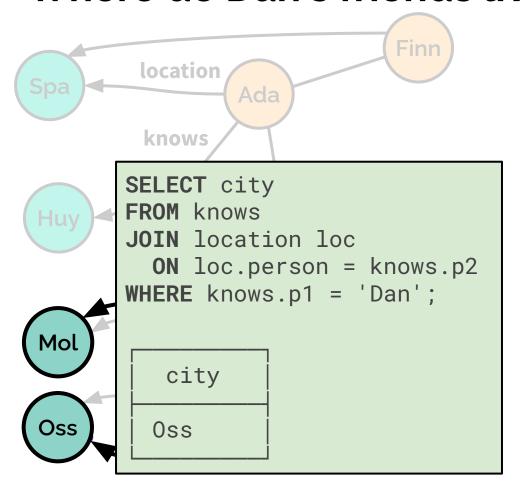
### knows

| <b>p1</b> | p2   |
|-----------|------|
| Ada       | Bob  |
| Ada       | Carl |
| Ada       | Finn |
| Bob       | Carl |
| Carl      | Dan  |
| Carl      | Eve  |
| Carl      | Gia  |
| Dan       | Gia  |

 $\bowtie$ 

### location

| person | city |
|--------|------|
| Ada    | Spa  |
| Bob    | Huy  |
| Carl   | Mol  |
| Dan    | Oss  |
| Eve    | Mol  |
| Finn   | Spa  |
| Gia    | Oss  |



### knows

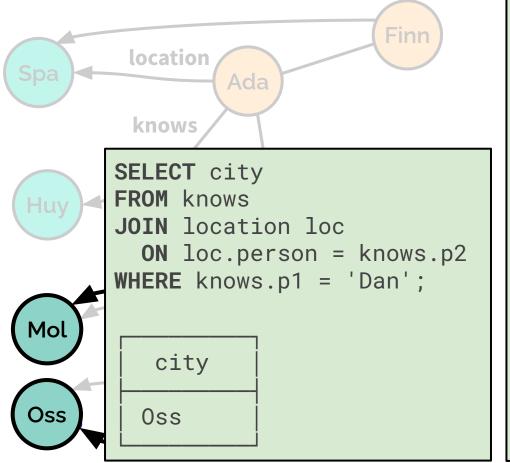
| <b>p1</b> | p2   |  |
|-----------|------|--|
| Ada       | Bob  |  |
| Ada       | Carl |  |
| Ada       | Finn |  |
| Bob       | Carl |  |
| Carl      | Dan  |  |
| Carl      | Eve  |  |
| Carl      | Gia  |  |
| Dan       | Gia  |  |

M

#### location

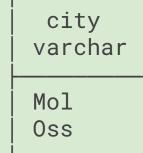
| person | city |
|--------|------|
| Ada    | Spa  |
| Bob    | Huy  |
| Carl   | Mol  |
| Dan    | Oss  |
| Eve    | Mol  |
| Finn   | Spa  |
| Gia    | Oss  |

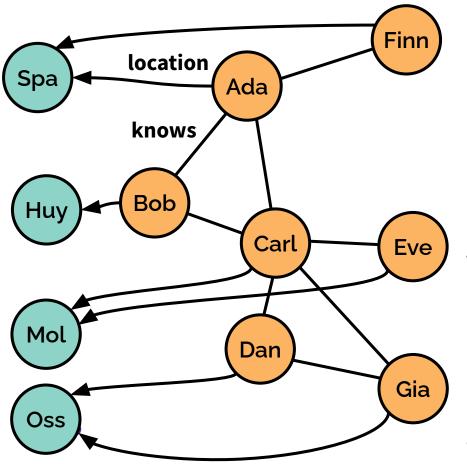
Where do Dan's friends livereate view knows\_undir as



SELECT p1, p2 FROM knows UNION ALL SELECT p2, p1 FROM knows;

SELECT city
FROM knows\_undir ku
JOIN location loc
 ON loc.person = ku.p2
WHERE ku.p1 = 'Dan';





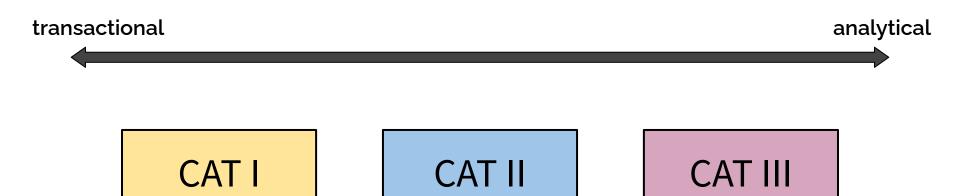
### **Cypher query language**

```
MATCH (p1 {name: 'Dan'})
        -[:knows]-(p2)
        -[:location]->(c)
RETURN c.name;
```

Two advantages:

- concise and readable joins
- elegant handling of bidirectional edges

Most graph databases have some special syntax sugar for joins.



all three categories address join problems

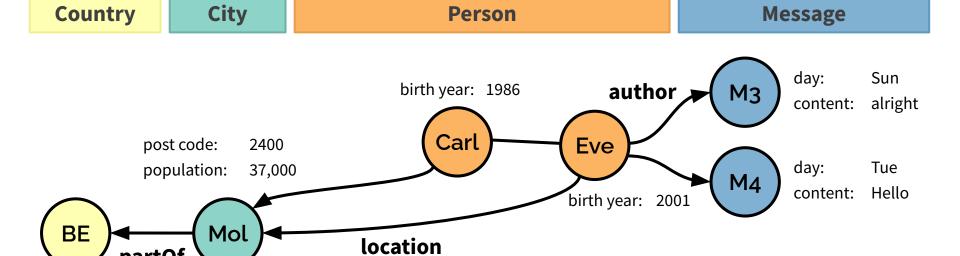
graph serving

**CAT II** 

**CAT III** 

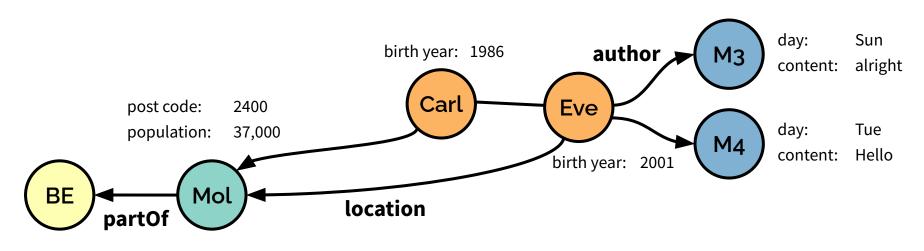
repeated joins =

n + 1 query problem



partOf

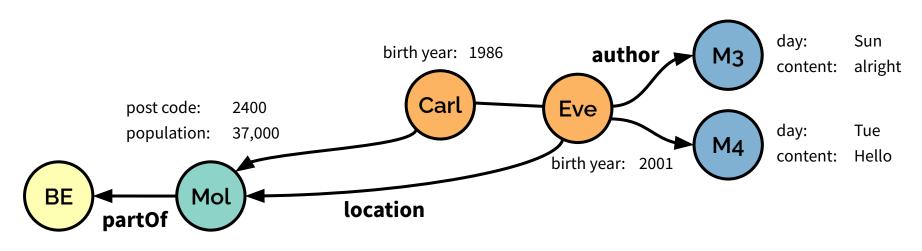




### partOf ⋈ City ⋈ location ⋈ Person ⋈ author ⋈ Message (left joins + filtering)

| city name | post code | population | person name | birth year | message id | day  | comment |
|-----------|-----------|------------|-------------|------------|------------|------|---------|
| Mol       | 2400      | 37,000     | Carl        | 1986       | NULL       | NULL | NULL    |
| Mol       | 2400      | 37,000     | Eve         | 2001       | M3         | Sun  | alright |
| Mol       | 2400      | 37,000     | Eve         | 2001       | M4         | Tue  | Hello   |

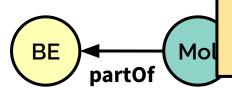




### partOf ⋈ City ⋈ location ⋈ Person ⋈ author ⋈ Message (left joins + filtering)

| city name | post code | population | person name | birth year | message id | day  | comment |
|-----------|-----------|------------|-------------|------------|------------|------|---------|
| Mol       | 2400      | 37,000     | Carl        | 1986       | NULL       | NULL | NULL    |
| Mol       | 2400      | 37,000     | Eve         | 2001       | M3         | Sun  | alright |
| Mol       | 2400      | 37,000     | Eve         | 2001       | M4         | Tue  | Hello   |



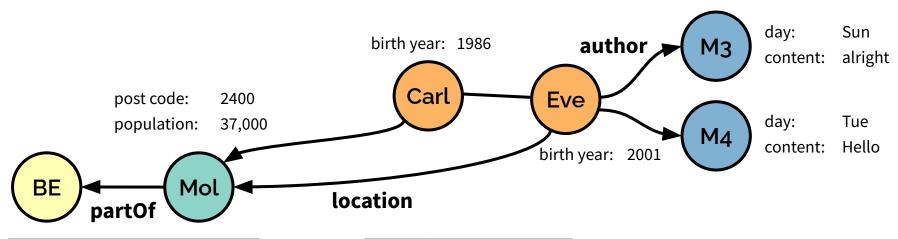


# complex queries + overfetching + client has to reconstruct the graph from a table

ight

### partOf ⋈ City⋈ location ⋈ Person ⋈ author ⋈ Message (left joins + filtering)

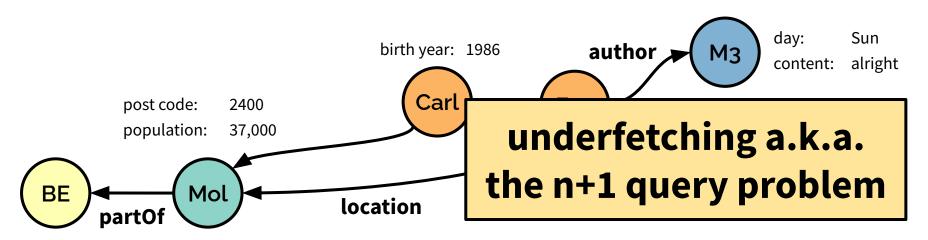
| city name | post code | population | person name | birth year | message id | day  | comment |
|-----------|-----------|------------|-------------|------------|------------|------|---------|
| Mol       | 2400      | 37,000     | Carl        | 1986       | NULL       | NULL | NULL    |
| Mol       | 2400      | 37,000     | Eve         | 2001       | M3         | Sun  | alright |
| Mol       | 2400      | 37,000     | Eve         | 2001       | M4         | Tue  | Hello   |



| city<br>name | post<br>code | population |
|--------------|--------------|------------|
| Mol          | 2400         | 37,000     |

| city<br>name | person<br>name | birth<br>year |
|--------------|----------------|---------------|
| Mol          | Carl           | 1986          |
| Mol          | Eve            | 2001          |

| person<br>name | message<br>id | day | content |
|----------------|---------------|-----|---------|
| Eve            | M3            | Sun | alright |
| Eve            | M4            | Sun | Hello   |



| city<br>name | post<br>code | population |  |
|--------------|--------------|------------|--|
| Mol          | 2400         | 37,000     |  |

| city<br>name | person<br>name | birth<br>year |  |
|--------------|----------------|---------------|--|
| Mol          | Carl           | 1986          |  |
| Mol          | Eve            | 2001          |  |

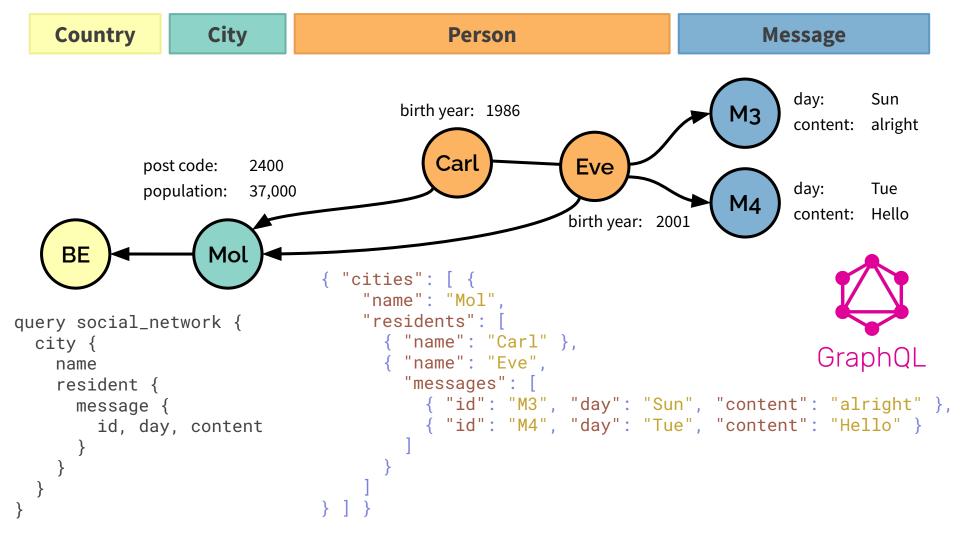
| person<br>name | message<br>id | day | content |  |
|----------------|---------------|-----|---------|--|
| Eve            | M3            | Sun | alright |  |
| Eve            | M4            | Sun | Hello   |  |

# Why is querying a graph difficult?

### Problems:

- overfetching is expensive, introduces redundancy
- underfetching is slow and leads to the n+1 query problem

These are due to the **impedance mismatch from ORM** (object-relational mapping)



### OrientDB & co.

2010

# SQL dialect, Gremlin

User-friendly SQL dialect:

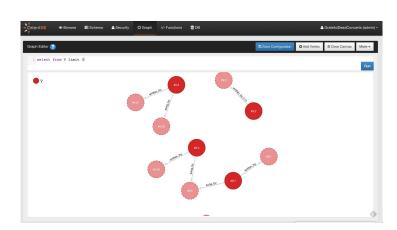
SELECT \* FROM message m
WHERE m.author.city.country = 'BE';

SAP acquired OrientDB, then abandoned it

Its open-source repository and two of its forks

OrientDB ASLv2 Froprietary YouTrackDB

ArcadeDB



### **Microsoft Cosmos DB**

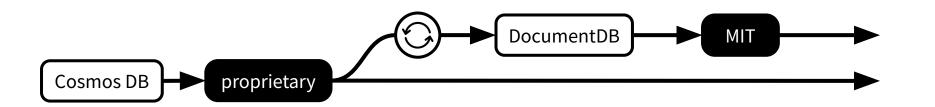
2017

# SQL dialect, Gremlin, etc.

Distributed, schemaless NoSQL graph database

Powers ChatGPT in Azure

Also offers a SQL-like language, Gremlin, and a MongoDB-compatible API





ArangoDB



Gremlin

**AQL** 

DQL (≈ GraphQL)

LinkedIn LIquid



SurrealDB

(in the second s

**Datalog** 

SQL, GraphQL

Datalog, WOQL (≈ GraphQL)

# Hints for spotting graph serving systems

A graph database is likely a **graph serving** system if it is:

- backed by a key-value / document store
- called a "real-time graph database"
- categorized under "multi-model" graph database

| Jan<br>2025 | Rank<br>Dec<br>2024 | Jan         | DBMS                        | Database Model                       | Score Jan Dec 2025 2024 |  |
|-------------|---------------------|-------------|-----------------------------|--------------------------------------|-------------------------|--|
| 1.          | 1.                  | 1.          | Neo4j    •                  | Graph                                | 43.69 +0.62             |  |
| 2.          | 2.                  | 2.          | Microsoft Azure Cosmos DB 🖪 | Multi-model Docume                   | Document store          |  |
| 3.          | 3.                  | 3.          | Aerospike 🚹                 | Multi-model 🔟 Graph [                | DBMS                    |  |
| 4.          | 4.                  | 4.          | Virtuoso 🚹                  | Multi-model 🔃 Key-val                |                         |  |
| 5.          | 5.                  | 5.          | ArangoDB 🚼 Multi-model 🛐 W  |                                      | olumn store             |  |
| 6.          | 6.                  | 6.          | OrientDB                    | Multi-model 🛐 <mark>Spatial [</mark> | DBMS                    |  |
| 7.          | 7.                  | <b>1</b> 0. | GraphDB 🚹                   | Multi-model 🔟                        | 2.72 -0.06              |  |
| 8.          | 8.                  | <b>4</b> 7. | Memgraph 🚹                  | Graph                                | 2.62 -0.08              |  |

transactional analytical

"MongoDB"

**CAT II** 

**CAT III** 

repeated joins =

n + 1 query problem

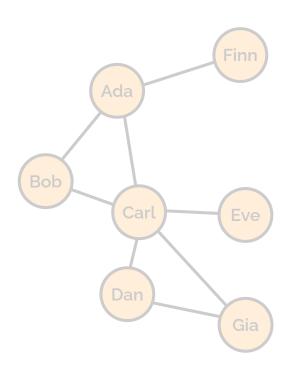
"MongoDB"

repeated joins = n + 1 query problem classic graph database

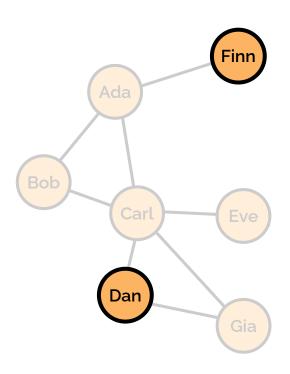
recursive joins = path queries

**CAT III** 

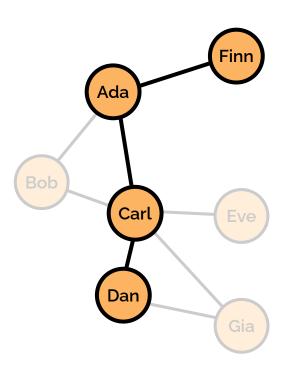
# **Shortest path finding**



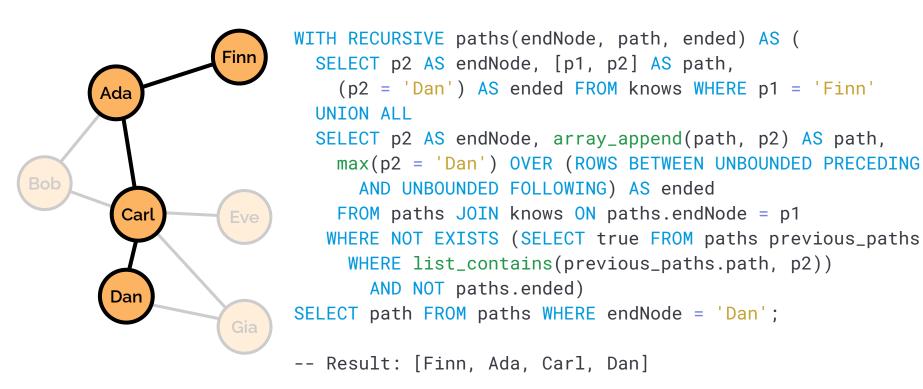
# **Shortest path finding**



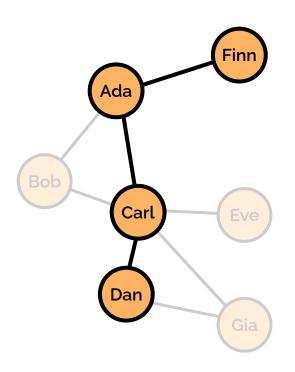
# Shortest path finding



# Shortest path finding in SQL:1999



# Shortest path finding in Cypher



```
MATCH
  p = shortestPath(
    (:Person { name: 'Finn' })-[:knows*]-
    (:Person { name: 'Dan' })
  )
RETURN p;
```

# Neo4j

2007

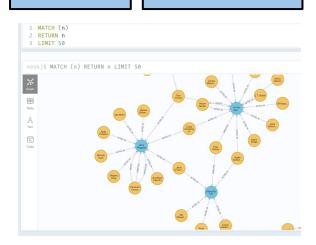
# Cypher

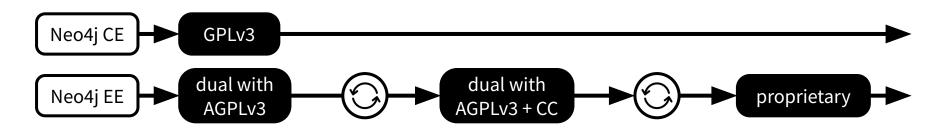
The first modern graph database

- Cypher query language → openCypher → GQL
- Advocacy work: books, meetups, FOSDEM devrooms

### Leans into analytics

- Analytics suite
- Parallel runtime in EE





# Titan / JanusGraph / HugeGraph

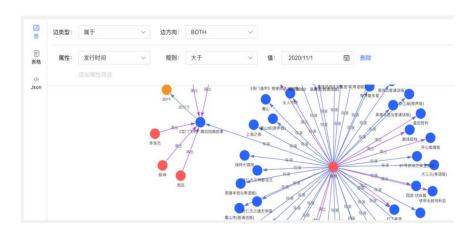
2012

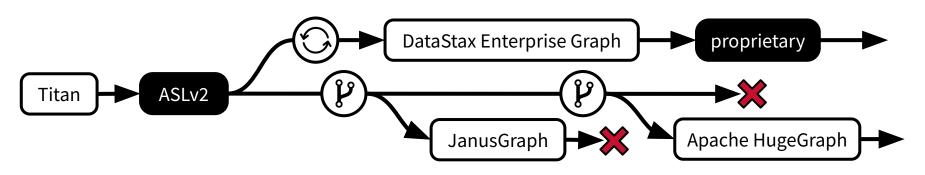
Gremlin

Distributed graph database

Storage layer: RocksDB, Cassandra, MySQL / PostgreSQL, etc.

Workload: highly transactional setups











Cypher, Gremlin, **SPARQL** 

Cypher, Gremlin

Gremlin





ዹ

**Google Cloud Spanner Graph** 



Cypher

Cypher, nGQL, GQL SQL/PGQ,

UQL,

GQL







Cypher, Gremlin, SPARQL

Cypher, Gremlin

Gremlin







**Google Cloud Spanner Graph** 



Cypher

Cypher, nGQL, GQL

SQL/PGQ, GQL UQL, GQL

#### **Extensions for RDBMS**

- IBM Db2 Graph: Gremlin transpiled to SQL
- PostgreSQL AGE extension: openCypher transpiled to SQL
- PostgreSQL: SQL/PGQ (WIP)
- Oracle Database 23ai: SQL/PGQ
- Microsoft SQL Server Graph: SQL/PGQ-like custom syntax
- SAP HANA Graph: openCypher for queries, GraphScript for algorithms

"MongoDB"

"Postgres"

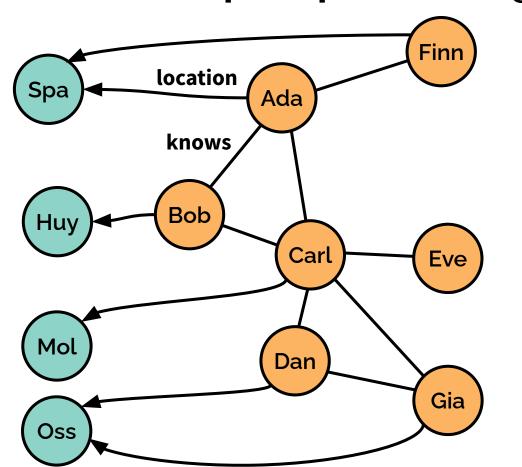
**CAT III** 

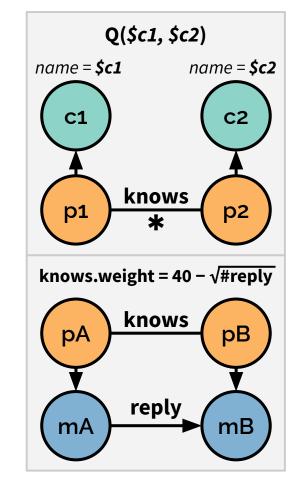
repeated joins =
n + 1 query problem

recursive joins = path queries

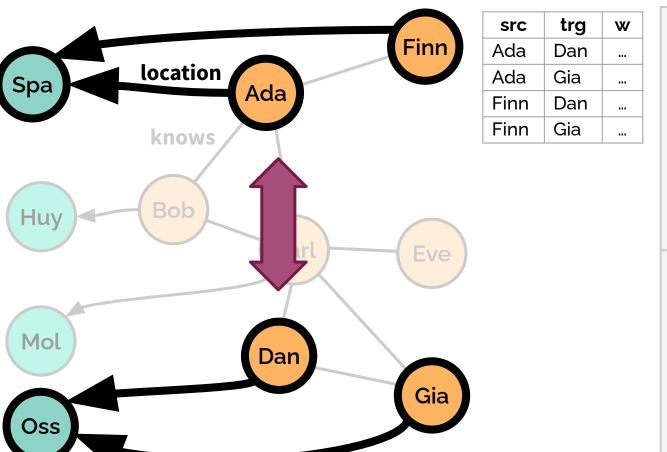


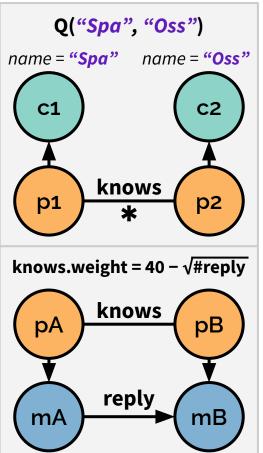
#### Find cheapest paths (weighted shortest)



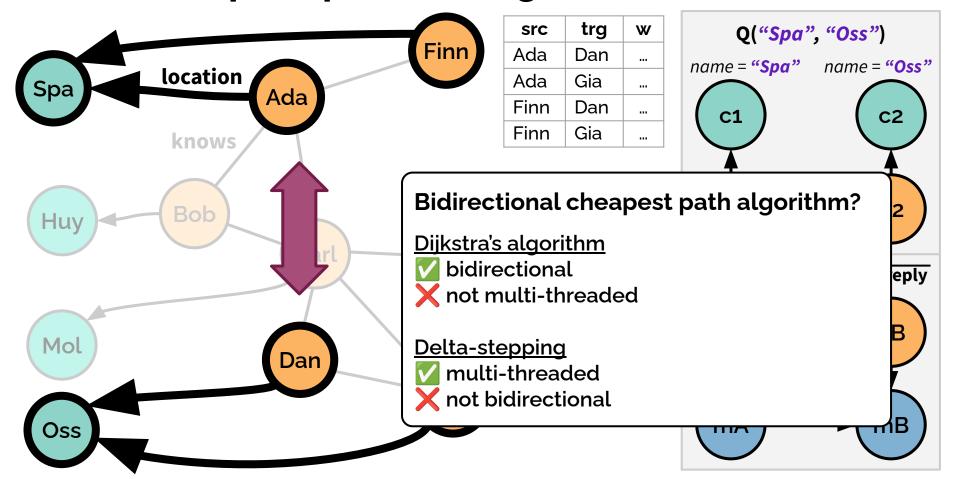


#### Find cheapest paths (weighted shortest)

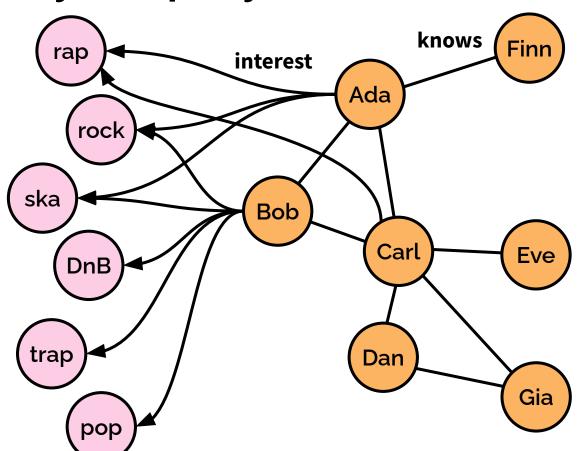




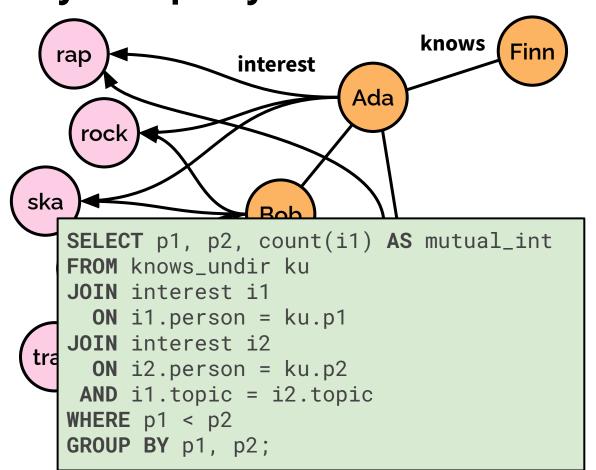
#### Find cheapest paths (weighted shortest)



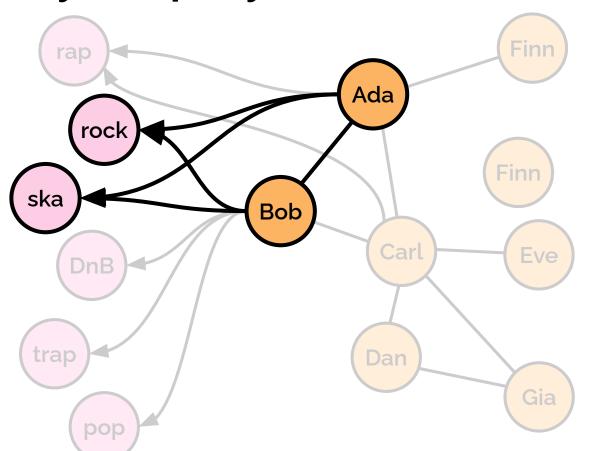
### Graph BI 2: Cyclic queries



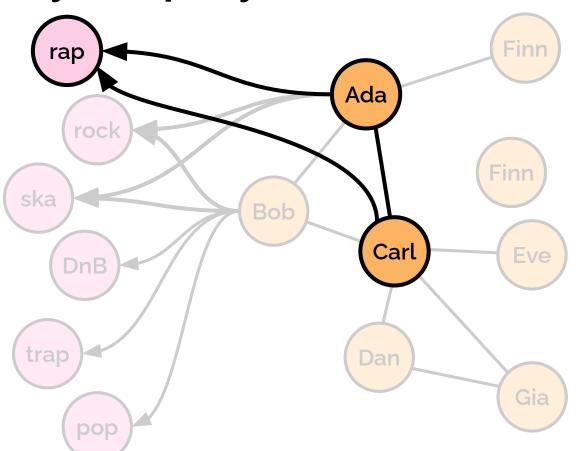
| t1   | <b>p1</b> | p2   | t2   |
|------|-----------|------|------|
| rap  | Ada       | Bob  | rock |
| rock | Ada       | Bob  | rock |
| ska  | Ada       | Bob  | rock |
| rap  | Ada       | Bob  | ska  |
| rock | Ada       | Bob  | ska  |
| ska  | Ada       | Bob  | ska  |
| rap  | Ada       | Bob  | DnB  |
| rock | Ada       | Bob  | DnB  |
| ska  | Ada       | Bob  | DnB  |
| rap  | Ada       | Bob  | trap |
| rock | Ada       | Bob  | trap |
| ska  | Ada       | Bob  | trap |
| rap  | Ada       | Carl | rap  |
| rock | Ada       | Carl | rap  |
| ska  | Ada       | Carl | rap  |



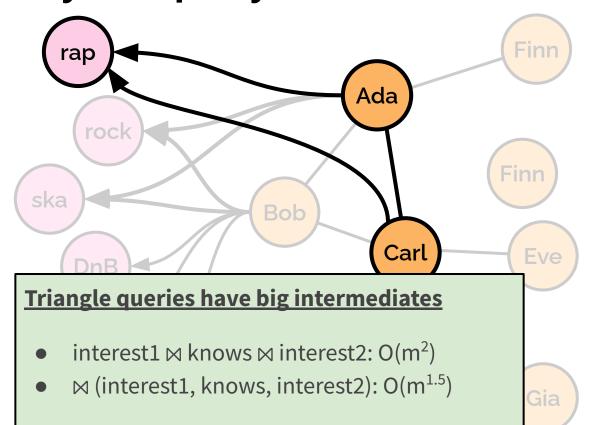
| t1   | p1  | p2   | t2   |
|------|-----|------|------|
| rap  | Ada | Bob  | rock |
| rock | Ada | Bob  | rock |
| ska  | Ada | Bob  | rock |
| rap  | Ada | Bob  | ska  |
| rock | Ada | Bob  | ska  |
| ska  | Ada | Bob  | ska  |
| rap  | Ada | Bob  | DnB  |
| rock | Ada | Bob  | DnB  |
| ska  | Ada | Bob  | DnB  |
| rap  | Ada | Bob  | trap |
| rock | Ada | Bob  | trap |
| ska  | Ada | Bob  | trap |
| rap  | Ada | Carl | rap  |
| rock | Ada | Carl | rap  |
| ska  | Ada | Carl | rap  |



| t1   | p1  | p2   | t2   |
|------|-----|------|------|
| rap  | Ada | Bob  | rock |
| rock | Ada | Bob  | rock |
| ska  | Ada | Bob  | rock |
| rap  | Ada | Bob  | ska  |
| rock | Ada | Bob  | ska  |
| ska  | Ada | Bob  | ska  |
| rap  | Ada | Bob  | DnB  |
| rock | Ada | Bob  | DnB  |
| ska  | Ada | Bob  | DnB  |
| rap  | Ada | Bob  | trap |
| rock | Ada | Bob  | trap |
| ska  | Ada | Bob  | trap |
| rap  | Ada | Carl | rap  |
| rock | Ada | Carl | rap  |
| ska  | Ada | Carl | rap  |



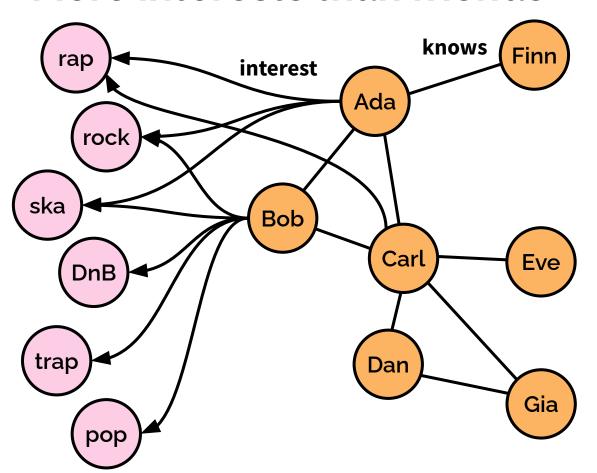
| t1   | <b>p1</b> | p2   | t2   |
|------|-----------|------|------|
| rap  | Ada       | Bob  | rock |
| rock | Ada       | Bob  | rock |
| ska  | Ada       | Bob  | rock |
| rap  | Ada       | Bob  | ska  |
| rock | Ada       | Bob  | ska  |
| ska  | Ada       | Bob  | ska  |
| rap  | Ada       | Bob  | DnB  |
| rock | Ada       | Bob  | DnB  |
| ska  | Ada       | Bob  | DnB  |
| rap  | Ada       | Bob  | trap |
| rock | Ada       | Bob  | trap |
| ska  | Ada       | Bob  | trap |
| rap  | Ada       | Carl | rap  |
| rock | Ada       | Carl | rap  |
| ska  | Ada       | Carl | rap  |



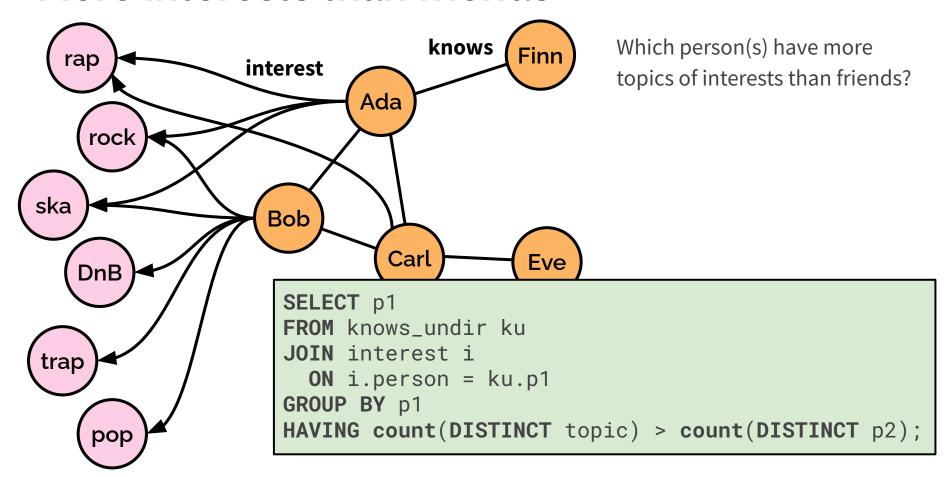
(Assuming m = |interest| = |knows| here.)

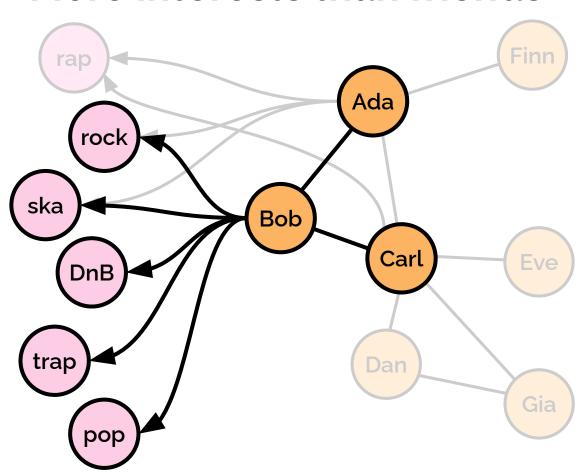
| t1   | <b>p1</b> | p2   | t2   |
|------|-----------|------|------|
| rap  | Ada       | Bob  | rock |
| rock | Ada       | Bob  | rock |
| ska  | Ada       | Bob  | rock |
| rap  | Ada       | Bob  | ska  |
| rock | Ada       | Bob  | ska  |
| ska  | Ada       | Bob  | ska  |
| rap  | Ada       | Bob  | DnB  |
| rock | Ada       | Bob  | DnB  |
| ska  | Ada       | Bob  | DnB  |
| rap  | Ada       | Bob  | trap |
| rock | Ada       | Bob  | trap |
| ska  | Ada       | Bob  | trap |
| rap  | Ada       | Carl | rap  |
| rock | Ada       | Carl | rap  |
| ska  | Ada       | Carl | rap  |

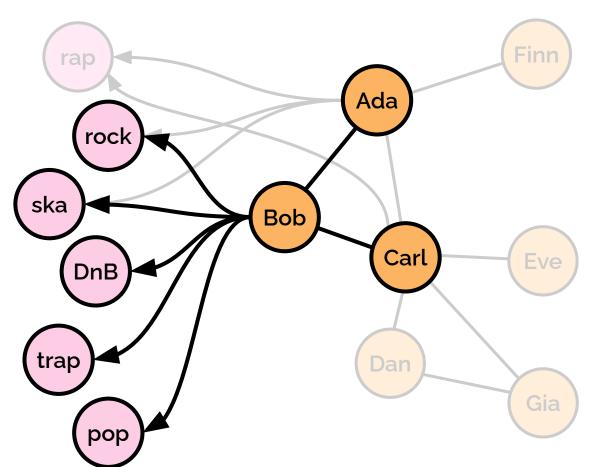
## Graph BI 3: Acyclic queries



Which person(s) have more topics of interests than friends?







| topic | p1  | p2   |
|-------|-----|------|
| rock  | Bob | Ada  |
| ska   | Bob | Ada  |
| DnB   | Bob | Ada  |
| trap  | Bob | Ada  |
| рор   | Bob | Ada  |
| rock  | Bob | Carl |
| ska   | Bob | Carl |
| DnB   | Bob | Carl |
| trap  | Bob | Carl |
| рор   | Bob | Carl |

Multi-valued dependency:

p1 \*\* topic and p1 \*\* p2

Many-to-many joins introduce a predictable type of redundancy which we can compress away!

| topic | p1   | p2   |
|-------|------|------|
| rap   | Ada  | Bob  |
| rock  | Ada  | Bob  |
| ska   | Ada  | Bob  |
| rap   | Ada  | Carl |
| rock  | Ada  | Carl |
| ska   | Ada  | Carl |
| rap   | Ada  | Finn |
| rock  | Ada  | Finn |
| ska   | Ada  | Finn |
| rock  | Bob  | Ada  |
| ska   | Bob  | Ada  |
| DnB   | Bob  | Ada  |
| trap  | Bob  | Ada  |
| pop   | Bob  | Ada  |
| rock  | Bob  | Carl |
| ska   | Bob  | Carl |
| DnB   | Bob  | Carl |
| trap  | Bob  | Carl |
| рор   | Bob  | Carl |
| rap   | Carl | Ada  |
| rap   | Carl | Bob  |

#### **Factorization**

Factorization is a lossless compression method.

flat to factorized



| topic                       |   | p1   |   | p2                |
|-----------------------------|---|------|---|-------------------|
| {rap, rock, ska}            | × | Ada  | × | {Bob, Carl, Finn} |
| {rock, ska, DnB, trap, pop} | × | Bob  | × | {Ada, Carl}       |
| {rap}                       | × | Carl | × | {Ada, Bob}        |

```
SELECT p1
FROM knows_undir ku
JOIN interest i
   ON i.person = ku.p1
GROUP BY p1
HAVING count(DISTINCT topic) > count(DISTINCT p2);
```

| topic | <b>p1</b> | p2   |
|-------|-----------|------|
| rap   | Ada       | Bob  |
| rock  | Ada       | Bob  |
| ska   | Ada       | Bob  |
| rap   | Ada       | Carl |
| rock  | Ada       | Carl |
| ska   | Ada       | Carl |
| rap   | Ada       | Finn |
| rock  | Ada       | Finn |
| ska   | Ada       | Finn |
| rock  | Bob       | Ada  |
| ska   | Bob       | Ada  |
| DnB   | Bob       | Ada  |
| trap  | Bob       | Ada  |
| pop   | Bob       | Ada  |
| rock  | Bob       | Carl |
| ska   | Bob       | Carl |
| DnB   | Bob       | Carl |
| trap  | Bob       | Carl |
| рор   | Bob       | Carl |
| rap   | Carl      | Ada  |
| rap   | Carl      | Bob  |

#### **Factorization**

Factorization is a lossless compression method.

flat to factorized



| topic                       |   | p1   |   | p2                |
|-----------------------------|---|------|---|-------------------|
| {rap, rock, ska}            | × | Ada  | × | {Bob, Carl, Finn} |
| {rock, ska, DnB, trap, pop} | × | Bob  | × | {Ada, Carl}       |
| {rap}                       | × | Carl | × | {Ada, Bob}        |

Workloads heavy on many-to-many joins could benefit from factorization but there are many open questions:

How to factorize long chains? Which queries benefit from factorization? How to implement it efficiently? How to return a factorized data structure to the client?

#### Where did we start from?

Advanced factorization methods ("d-representation") also returning compact graphs

#### partOf ⋈ City⋈ location ⋈ Person ⋈ author ⋈ Message

| city name | post code | population | person name | birth year | message id | day  | comment |
|-----------|-----------|------------|-------------|------------|------------|------|---------|
| Mol       | 2400      | 37,000     | Carl        | 1986       | NULL       | NULL | NULL    |
| Mol       | 2400      | 37,000     | Eve         | 2001       | M3         | Sun  | alright |
| Mol       | 2400      | 37,000     | Eve         | 2001       | M4         | Tue  | Hello   |

| city name | post code | population |   | person name | birth year |   | message                                   |
|-----------|-----------|------------|---|-------------|------------|---|-------------------------------------------|
| Mol       | 2400      | 37,000     | × | Carl        | 1986       | × | NULL                                      |
|           |           |            |   | Eve         | 2001       | × | {⟨M3, Sun, alright⟩,<br>⟨M4, Tue, Hello⟩} |

#### Research papers

#### Worst-case optimal joins:

- 2013 **AGM bound**. SIAM J. Comput.
- 2014 Worst-case optimal joins. PODS
- 2019 Vertex ordering in worst-case optimal joins. VLDB
- 2020 Hash-based worst-case optimal join implementations. VLDB

#### Factorization:

- 2012 **FDB: A query engine for factorised relational databases.** VLDB
- 2015 Size bounds for factorized representations of query results. TODS
- 2024 Optimizing queries with many-to-many joins.
- 2025 Adaptive factorization using linear-chained hash tables. CIDR

#### Kùzu

2023

Cypher

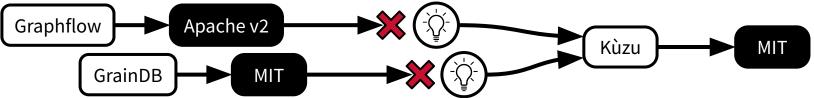
Single-node, in-process system

Uses a relational backend

**Supports Cypher** 

Strong focus on path queries, worst-case optimal joins, and factorization





#### **TigerGraph**

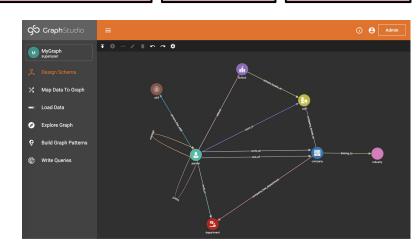
2012

GSQL

```
Focus on path queries
```

```
GSQL language:
```

```
CREATE QUERY hello(VERTEX<Person> p) {
  Start = {p};
  Result = SELECT dst
    FROM Start:src -(knows:e)- Person:dst;
    PRINT Result;
}
```



"MongoDB"

repeated joins = n + 1 query problem "Postgres"

recursive joins = path queries

"Teradata"

many-to-many joins =

complex recursive joins cyclic graph patterns long acyclic patterns

# What about schema and distribution?

#### Schema? Single-node vs. distributed?

|                         | single-node                      | distributed                    |
|-------------------------|----------------------------------|--------------------------------|
| no / optional<br>schema | Neo4j CE                         | Neo4j EE                       |
|                         | OrientDB / ArcadeDB / YouTrackDB | Cosmos DB                      |
| strict schema           | Kùzu                             | Titan / JanusGraph / HugeGraph |
|                         | DuckPGQ                          | TigerGraph                     |

#### **Benchmarks**

#### LDBC: Linked Data Benchmark Council

#### **Mission:**

Accelerate progress in graph data management

#### **Membership:**

- ~25 organizations
- ~100 individuals



































**HUAWEI CLOUD** 



\*Sparsity







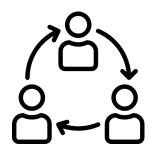


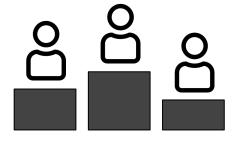


#### **Members**

- database companies
- hardware vendors
- Cloud providers
- researchers

#### LDBC encourages members to...



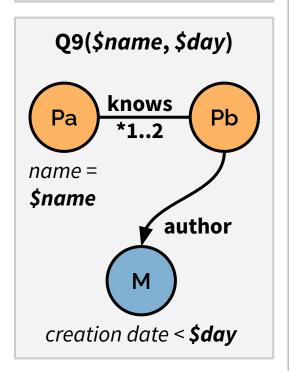


**collaborate** on standards

**compete** on performance

## Benchmarks and query languages

#### "Interactive" workload



#### **SQL:1992**

```
SELECT DISTINCT m.id
FROM (
SELECT k.p2id AS id
 FROM person Pa,
      knows k
WHERE Pa.name = $name
   AND Pa.id = k.p1id
UNTON
SELECT k2.p2id AS id
 FROM person Pa,
      knows k1,
      knows k2
WHERE Pa.name = $name
   AND Pa.id = k1.p1id
   AND k1.p2id = k2.p1id
   AND k1.p1id <> k2.p2id
) Pb,
Message m
WHERE Pb.id = m.authorId
 AND m.creationDate < $day
```

#### SQL/PGQ (SQL:2023)

```
SELECT id
FROM GRAPH_TABLE (socialNetwork
MATCH ANY ACYCLIC
  (Pa:Person WHERE Pa.name = $name)
  -[:knows]-{1,2} (Pb:Person)
  -[:author]-> (m:Message)
WHERE m.creationDate < $day
COLUMNS (m.id))</pre>
```

#### **GQL**

#### MATCH ANY ACYCLIC

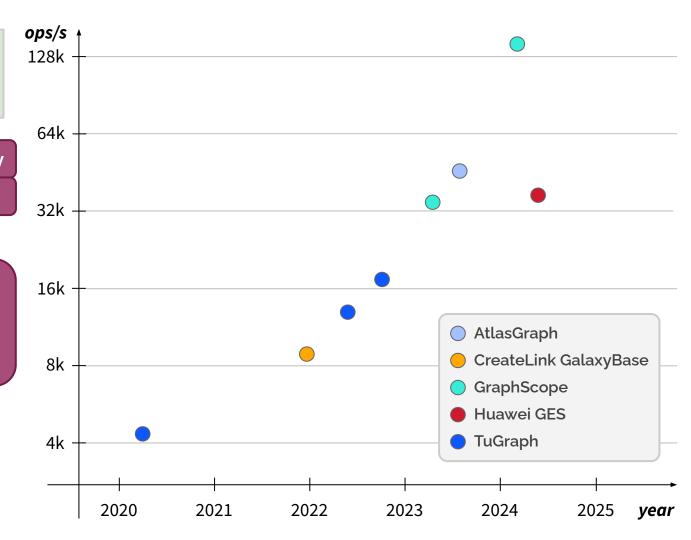
```
(Pa:Person WHERE Pa.name = $name)
-[:knows]-{1,2} (Pb:Person)
-[:author]-> (m:Message)
WHERE m.creationDate < $day
RETURN DISTINCT m.id</pre>
```

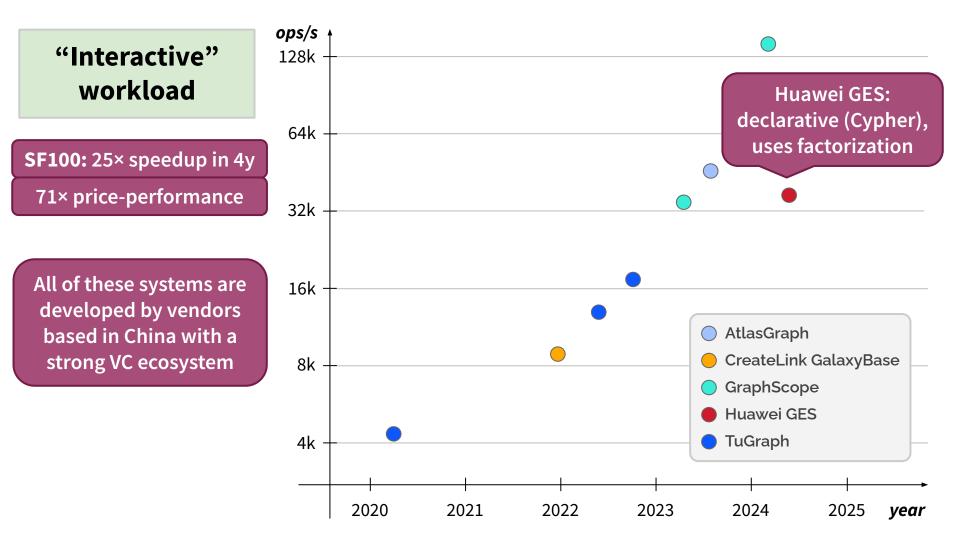


SF100: 25× speedup in 4y

71× price-performance

All of these systems are developed by vendors based in China with a strong VC ecosystem



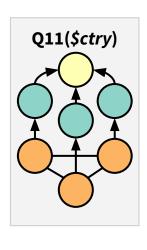


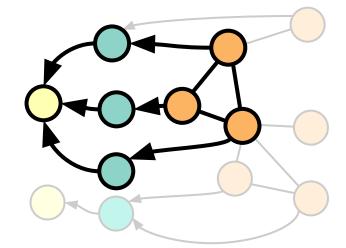
# "Business Intelligence" workload

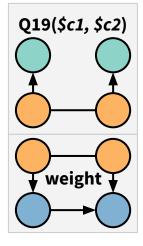
Analytical workload

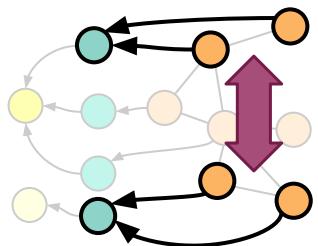
Metric 1: Power

Metric 2: Throughput









# "Business Intelligence" workload

Analytical workload

Metric 1: Power

Metric 2: Throughput

### **Audited results**

### **Scale factors**



100

1,000 (×3)

10,000



30,000

More audits coming this year!

### **Financial Benchmark**

Transactional workload

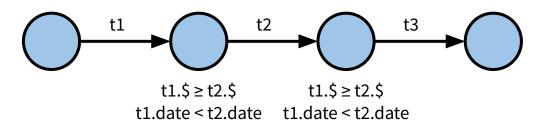
Metric: Throughput

Target: Distributed systems

Relaxed consistency requirements

Developed by the Ant Group, Create Link, Ultipa, etc.

- Strict latency requirements (P99 < 100 ms)</li>
- Relaxed consistency guarantees
- Truncation (sampling) on most recent edges
- Interesting queries, e.g. REM path queries (Regular Expression with Memory)



# Using the benchmarks

# Benchmark kit

Specification

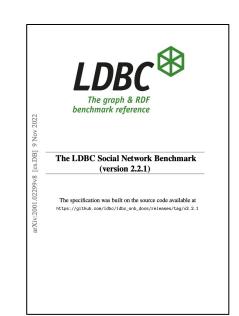
Academic paper

Data generator

Pre-generated data sets

Driver

2+ implementations





Dávid Szakállas Peter Boncz

### The LDBC Social Network Benchmark: **Business Intelligence Workload**

| Gábor Szárnyas<br>CWI<br>pabor.szarnyas@cwi.nl                           | Jack Waudby<br>Newcastle University<br>j.waudby2@ncl.ac.uk | Benjamin A. Steen<br>Pometry<br>ben.steer@pometry.co |  |  |
|--------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------|--|--|
| Altan Birler<br>Fechnische Universität<br>München<br>altan.birler@tum.de | Mingxi Wu<br>TigerGraph<br>mingxi.wu@tigergraph.com        | Yuchen Zhang<br>TigerGraph<br>yuchen zhang@tigergrap |  |  |

The Social Network Benchmark's Business Intelligence workload (SNB BI) is a comprehensive graph OLAP benchmark targeting analytical data systems capable of supporting graph workloads. This paper marks the finalization of almost a decade of research in academia and industry via the Linked Data Benchmark Council (LDBC). SNB Bl advances the state-of-the art in synthetic and scal able analytical database benchmarks in many aspects. Its base is ance manysten unanone oersermanes in many aspects, no une is a sophisticated data generator, implemented on a scalable distributed infrastructure, that produces a social graph with small-world pla-nomena, whose value properties follow slowed and correlated distributions and where values correlate with structure. This is a temporal graph where all nodes and edges follow lifespan-based rules with temporal skew enabling realistic and consistent temporal inserts and frecursive) deletes. The query workbad exploiting this skew and correlation is based on LDBC's "choke point"-driver design methodology and will entire technical and scientific im-provements in future (graph) database systems. SNB Bi includes the first adoption of "parameter curation" in an analytical benchmark, a technique that ensures stable runtimes of query variants across different parameter values. Two performance metrics characterize peak single-query performance (power) and nutrianed concurrent query throughput. To demonstrate the portability of the benchmark, we present experimental results on a relational and a graph DBMS. Note that these do not constitute an official LDBC Benchmark Re-sult – only audited results can use this trademarked term.

PVLDB Reference Format: Giber Sairnyas, Jack Waudby, Benjamin A. Steer, Dávid Szakillas, Altan Birler, Mingsi Wu, Yuchen Zhang, and Peter Boecz. The LDBC Social Network Benchmark: Business Intelligence Workload, PVLDB, 16(4): 877 del 00.14779/3574245.3574270

### PVLDS Artifact Availability: The source code, data, and/or other artifacts have been made available at

https://githuk.com/ldbc/ldbc\_sub\_bi/releases/tap/v1.0.3.

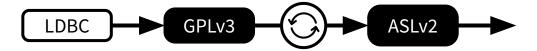
Table 1: The SNR BI workload fills in the space between LDB SNB Interactive and LDBC Graphalytics. It is a graph OLAP workload focusing on queries on a labelled attributed graph with temporal changes (inserts and deletes), targeting sys-tems with domain-specific query languages. We denote the data models and features covered, and whether a language is capable of implementing and allowed to implement a given benchmark. Notation: ⊗ yes, ⊘: no, ⊘: limited coverage.

| LDBC brechmark                                                                           | OUTP<br>SNB Interactive | OLAP<br>SNB BI    | algorithms<br>  Graphalytic       |  |
|------------------------------------------------------------------------------------------|-------------------------|-------------------|-----------------------------------|--|
| labelled attributed graph<br>insert operations<br>delete operations                      | 8 8                     | 8                 | 000                               |  |
| challenging joins<br>chespeet path finding<br>inter-query parallelism<br>query fortprint | O<br>sequined<br>small  | eptional<br>large | 0<br>8<br>not allowed<br>all data |  |
| SQL with recursion<br>GQL SQL/PGQ, Cypher<br>GSQL<br>SPARQL-path extension               | 8 8                     | 0 0 0             | 0080                              |  |

### 1 INTRODUCTION

Analyzing the connection potterns in graphs is a steadily expanding use case in data analytics and is projected to still grow considerably in importance [57]. It is reflected in the increasing role of graph-shaped data as represented in data models such as (initially) RDF and increasingly property graphs [5]. While graph analytics is of-ten associated with obviously graph-intensive application domains that manage data representing social networks, telecommunication networks, and enterprise knowledge graphs [60], graph challenges are also found in traditional relational data wavehouses and modern relationships, esp. along many-to-many relationships. Practitioners data system builders, and researchers are increasinally foresize or The Linked Data Benchmark Council. To expedite the evolution of

the modern graph data management stack, a group of industry and academic organizations founded the Linked Data Benchmark Coun-cil (LDBC) in 2012, originally as a European Union-funded project.

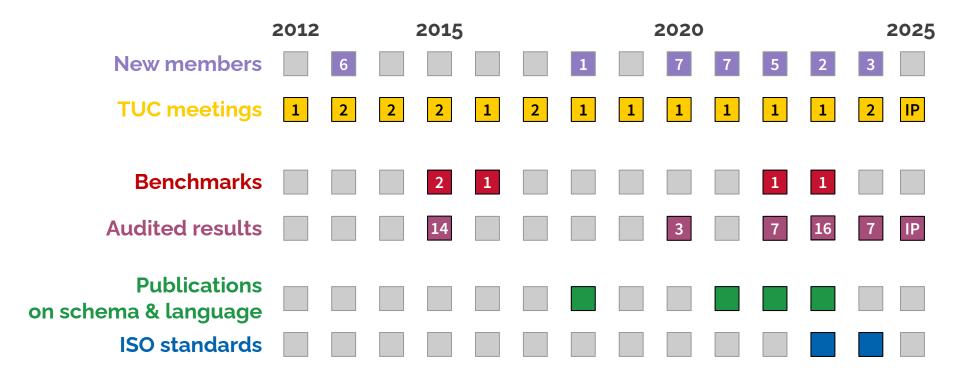


# LDBC has "TPC-grade" benchmarks

- Auditing: an old model but it's still relevant
- Certified auditor, full disclosure report
- 3-year total cost of operations (licenses, support)
- Multi-week auditing process
- 5 years of auditing: published ≈50 results and had to retract 0

| <ul> <li>System: GraphScope Flex 0.26.1</li> <li>Test sponsor: Alibaba Cloud</li> <li>Date: 2024-05-14</li> </ul> | 100 | Alibaba Cloud ecs.r8a.16xlarge<br>64×AMD EPYC 9T24 @ 3.7GHz<br>vCPUs, 512GiB RAM | 130,098.36 ops/s |
|-------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------|------------------|
| <ul><li>Queries implemented in: C++</li><li>System cost: 738,724 RMB (102,128.22 USD)</li></ul>                   | 300 | Alibaba Cloud ecs.r8a.16xlarge<br>64×AMD EPYC 9T24 @ 3.7GHz<br>vCPUs, 512GiB RAM | 131,263.87 ops/s |

# **LDBC** overview



# in the graph database space

Challenges

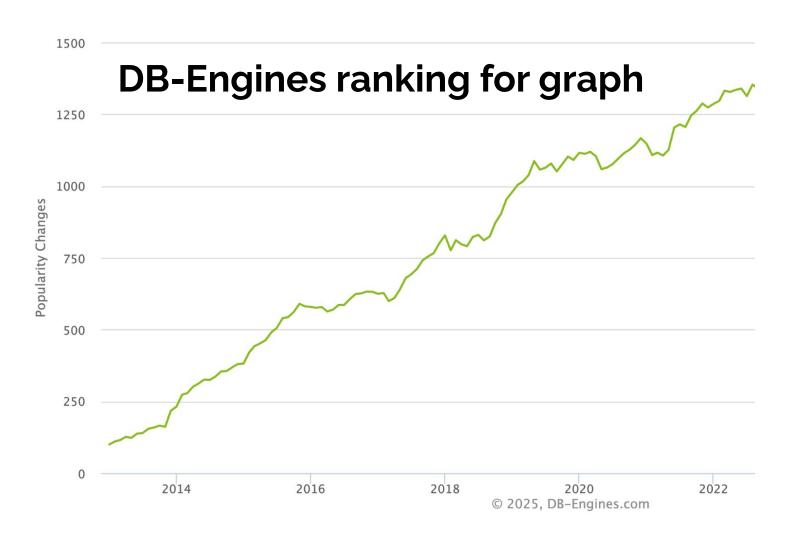
# Decline

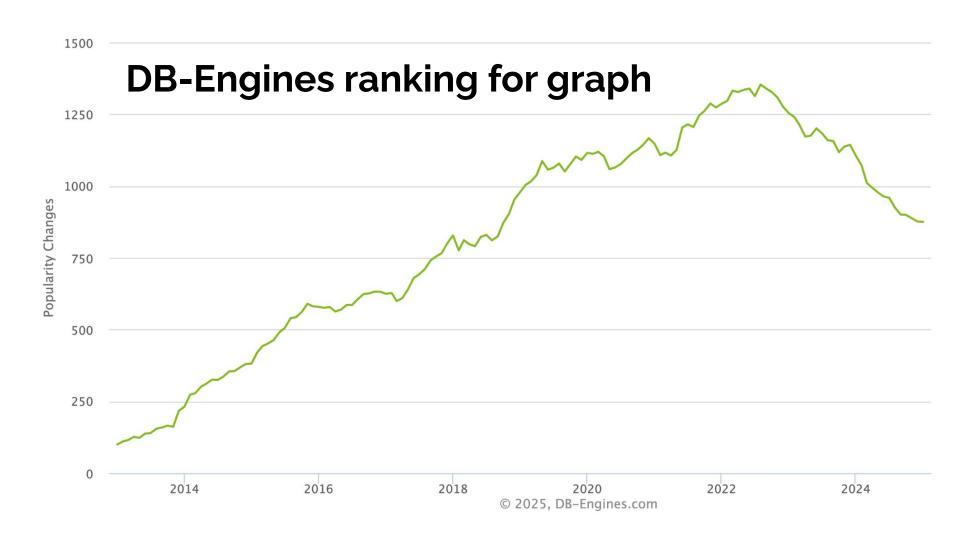
The hype cycle moved over to Al

### The confusion doesn't help anyone!

- "X is graph database system" → which category?
- "X doesn't need joins" → unnecessary and confusing conceptual shift
- "graph databases will replace RDBMSs" → this is very unlikely

There are niche use cases, which systems over-optimize for, causing fragmentation







# Summing up

# Graph databases <> joins

Graph databases have syntax sugar and optimizations for joins

If you have 10 joins in a query and it doesn't work well, try a graph database:

"MongoDB"

"Postgres"

"Teradata"

Fragmented landscape: graph databases are very specialized

Check licenses and performance results

## Sources

Information sheets (all of them contain inaccuracies!):

- Database of databases: <a href="https://dbdb.io/">https://dbdb.io/</a>
- DB-Engines Ranking of Graph DBMS: <a href="https://db-engines.com/en/ranking/graph+dbms">https://db-engines.com/en/ranking/graph+dbms</a>
- Wikipedia page of vendors

Recommended readings / presentations:

- Amine Mhedhbi: <u>Taming Large Intermediate Results for Joins over Graph-Structured</u> <u>Relations: A System Perspective</u>
- Kùzu blog: <a href="https://blog.kuzudb.com/">https://blog.kuzudb.com/</a>
- A eulogy for RedisGraph: <a href="https://www.bloorresearch.com/2023/08/a-eulogy-for-redisgraph/">https://www.bloorresearch.com/2023/08/a-eulogy-for-redisgraph/</a>

Big thanks for discussions to Akon Dey, Amine Mhedhbi and Daniel ten Wolde.



The graph & RDF benchmark reference