LDBCE

Graph Databases after 15 Years
- Where Are They Headed?

Gabor Szarnyas

Data Analytics devroom | FOSDEM | 2025-02-01

About me

2012-2019 ft

Sr h
MSc & PhD o0 og sraphs
postdoc
2023-
devrel ‘ DuckDB Labs not graphs

graph databases
in 15 minutes

new research
- not just for graphs!

pointers
for benchmarks

Running example

Country

partOf

BE

City

Spa

Huy

Mol

Person
location
Ada
knows
Bob
Carl
Dan

Message

Finn M1
author \Mon
reply

M2 M3
Tue Sun

Eve

Tue

: M5
Gia Fri

Graph databases

Fast data processing

DO NOT
DISTURB No expensive run-time JOINS.

| Join those who
left JOINs

behind

Graph
Construction Zone

No Joins
beyond this point

N\ ——

Relational databases can't join?

Where do Dan's friends live?

knows

pl p2
Ada Bob
Ada | Carl
Ada Finn
Bob | Carl
Carl | Dan
Carl | Eve
Carl | Gia

Dan

Gia

location
person | city
Ada Spa
Bob Huy
Carl Mol
Dan Oss
Eve Mol
Finn Spa
Gia Oss

Where do Dan's friends live?

(e
) &

knows

pl p2
Ada Bob
Ada | Carl
Ada Finn
Bob | Carl
Carl Dan
Carl | Eve
Carl | Gia
Dan | Gia

location
person | city
Ada Spa
Bob Huy
Carl Mol
Dan Oss
Eve Mol
Finn Spa
Gia Oss

Where do Dan's friends live?

SELECT city
FROM knows
JOIN location loc
ON loc.person = knows.p2
WHERE knows.p1l = 'Dan’;

city

Oss

knows

pl p2
Ada Bob
Ada | Carl
Ada Finn
Bob | Carl
Carl Dan
Carl | Eve
Carl | Gia
Dan | Gia

location
person | city
Ada Spa
Bob Huy
Carl Mol
Dan Oss
Eve Mol
Finn Spa
Gia Oss

Where do Dan's friends Li\ create viEw knows_undir As

SELECT city
FROM knows

JOIN location loc

ON loc.person
WHERE knows.pT

city

Oss

= knows.p2
= 'Dan’;

SELECT p1, p2 FROM knows
UNION ALL
SELECT p2, p1 FROM knows;

SELECT city
FROM knows_undir ku
JOIN location loc

ON loc.person = ku.p2
WHERE ku.p1 = 'Dan’;

city
varchar

Mol
Oss

Where do Dan's friends live?

Cypher query language

MATCH (p1 {name: 'Dan'})
-[:knows]-(p2)
-[:1location]->(c)
RETURN c.name;

Two advantages:

e concise and readable joins
e elegant handling of bidirectional edges

Most graph databases have some special
syntax sugar for joins.

transactional

analytical

—

CAT |

CAT Il

CAT Il

all three categories address join problems

transactional

analytical

—

graph
serving

repeated joins =
n+1query problem

CAT Il

CAT Il

Country City Person Message

birth year: 1986 day:

content:

post code: 2400
population: 37,000 day:

birth year: 2001 content:

location

Sun
alright

Tue
Hello

Country City Person Message

birth year: 1986 day: Su.n
content: alright

post code: 2400
population: 37,000 day: Tue

birth year: 2001 content: Hello

partof location

partOf i City b4 location 4 Person X author 4 Message (left joins + filtering)

cityname | postcode | population | person name | birthyear messageid day comment
Mol 2400 37,000 | Carl 1986 | NULL NULL NULL
Mol 2400 37,000 | Eve 2001 | M3 Sun alright

Mol 2400 37,000 | Eve 2001 | M4 Tue Hello

Country City Person Message

birth year: 1986 day: Surl
content: alright

post code: 2400
population: 37,000 day: Tue

birth year: 2001 content: Hello

partof location

partOf i City b4 location 4 Person X author 4 Message (left joins + filtering)

cityname | postcode | population | person name | birthyear messageid day comment
Mol 2400 37,000f Carl 1986 | NULL NULL NULL
Mol 2400 37,000] |Eve 2001} M3 Sun alright

Mol 2400 37,000) |Eve 2001} M4 Tue Hello

Country City Person Message

£\ . o

ight

e complex queries + overfetching +
ropuation: | Client has to reconstruct the graph ¢

llo
@ Mol from a table
partOof

partOf i City b4 location 4 Person X author 4 Message (left joins + filtering)

cityname | postcode | population | person name | birthyear messageid day comment
Mol 2400 37,000f Carl 1986 | NULL NULL NULL
Mol 2400 37,000] |Eve 2001} M3 Sun alright

Mol 2400 37,000) |Eve 2001} M4 Tue Hello

Country City Person Message

day:
birth year: 1986 y
content:
post code: 2400
population: 37,000 day:
birth year: 2001 content:
partof location
city post . city | person | birth person | message
name | code | POPUlation name = name | year name id day
Mol 2400 37,000 Mol Carl 1986 Eve M3 Sun
Mol Eve 2001 Eve M4 Sun

Sun
alright

Tue
Hello

content

alright

Hello

Country City Person Message

. day: Sun
birth year: 1986 author co:tent alright
post code: 2400 /\
lation: 37,000 1
Population underfetching a.k.a.
By
- the n+1 query problem
partof location
city post . city | person | birth person | message
name | code population name @ name | Yyear name id day | content
Mol 2400 37,000 Mol Carl 1986 Eve M3 Sun | alright

Mol Eve 2001 Eve M4 Sun | Hello

Why is querying a graph difficult?
Problems:

e overfetching is expensive, introduces redundancy
e underfetching is slow and leads to the n+1 query problem

These are due to the impedance mismatch from ORM (object-relational mapping)

Country City Person

birth year: 1986

post code: 2400

population: 37,000

{ "cities": [{

"name” . "Mol",
query social_network { "residents": [
city { { "name": "Carl" },
name { "name": "Eve",
resident { "messages": |
message { { "id": "M3", "day":
id, day, content { "id": "M4", "day":
}]
} }
}]

} 1}

birth year: 2001

day: Sun
content: alright
day: Tue
content: Hello
GraphQL
"Sun", "content": "alright" },
"Tue", "content": "Hello" }

OrientDB & co. 2010 || SQL dialect, Gremlin

User-friendly SQL dialect:

SELECT * FROM message m .0 o
WHERE m.author.city.country = 'BE'; [

SAP acquired OrientDB, then abandoned it

Its open-source repository and two of its forks
are active

[OrientDB

\/

ArcadeDB

Microsoft Cosmos DB

2017

SQL dialect, Gremlin, etc.

Distributed, schemaless NoSQL graph database

Powers ChatGPT in Azure

Also offers a SQL-like language, Gremlin, and a

MongoDB-compatible API

C

NoSQL

SELECT VALUE {
"name": CONCAT(e.name.last, " ", e.name.first),

"department": e.department.name,
"emailAddresses": [

e.email
]
}
FROM
employees e
WHERE

STRINGEQUALS(e.department.name, "logistics", true)

DocumentDB]—bm—b

>

[Cosmos DB proprietary

45. Aerospike

Gremlin

Linkedin Liquid

Datalog

@) ArangoDB

AQL

&) SurrealDB

SQL, GraphQL

0Dgraph

DQL (> GraphQL)

=) TerminusDB

Datalog, WOQL
(= GraphQL)

Hints for spotting graph serving systems

A graph database is likely a graph serving system if it is:

e backed by a key-value / document store
e called a“real-time graph database”
e categorized under “multi-model” graph database

Rank Score
Jan Dec Jan DBMS Database Model TanBlDec
2025 2024 2024 2025 2024
1. 1 1. Neodj 3 Graph 43.69 +0.62
2. 2 2. Microsoft Azure Cosmos DB [3 Multi-model
Document store
3. 3 3. Aerospike Multi-model E@fGraph DBMS
4. 4 4. \Virtuoso 3 Multi-model [l Key-value store
5. 5 5. ArangoDB 3 Multi-model [Wide column store
6. 6. 6. OrientDB Multi-model [gg| SP2atial DBMS
7. 7. #+10. GraphDB E3 Multi-model @ 2.72 -0.06
8. 8. % 7. Memgraph 2 Graph 2.62 -0.08

transactional

analytical

—

“MongoDB”

repeated joins =
n+1query problem

CAT Il

CAT Il

transactional

analytical

—

“MongoDB”

repeated joins =
n+1query problem

classic graph
database

recursive joins =
path queries

CAT Il

Shortest path finding

Shortest path finding

Shortest path finding

Ada

Carl

Shortest path finding in SQL:1999

WITH RECURSIVE paths(endNode, path, ended) AS (
@ SELECT p2 AS endNode, [p1, p2] AS path,
Ada (p2 =) AS ended FROM knows WHERE p1

UNION ALL

SELECT p2 AS endNode, array_append(path, p2) AS path,
max(p2 =) OVER (ROWS BETWEEN UNBOUNDED PRECEDING
AND UNBOUNDED FOLLOWING) AS ended

Carl FROM paths JOIN knows ON paths.endNode
WHERE NOT EXISTS (SELECT true FROM paths previous_paths
WHERE list_contains(previous_paths.path, p2))

@ AND NOT paths.ended)
SELECT path FROM paths WHERE endNode

-- Result: [Finn, Ada, Carl, Dan]

Shortest path finding in Cypher

@ MATCH
p = shortestPath(

Ada

(:Person { name: })-[:knows*]-
(:Person { name:)
)
RETURN p;
Carl

Neod4j 2007 || Cypher

The first modern graph database
e Cypher query language » openCypher > GQL
e Advocacy work: books, meetups, FOSDEM devrooms

Leans into analytics
e Analytics suite
e Parallel runtimein EE

i D -

f Neodi EE dual with @ dual with @ coprietar
L J AGPLV3 AGPLV3 + CC proprietary

Titan [JanusGraph /[HugeGraph 2012 || Gremlin

Distributed graph database

Storage layer: RocksDB, Cassandra, MySQL - ‘ g AT g
/ PostgreSQL, etc. .. ."“o,,, \t k”'.“‘v'
- ' & >
Workload: highly transactional setups e s .”‘
X AN N e

DataStax Enterprise Graph

JanusGraph]-bx Apache HugeGraph]—>

32:323?12 8“\ GFILFIHXYBHSE C 5 GraphScope
Cypher"éFé"rﬁii_h""""""""Eg}b'ﬁé?_é'féﬁ}ifh _________________ Gremlin |

Amazon

Neptune 8'\ GRALAXYBASE 5 GraphScope

Cypher, Gremlin, Cypher, Gremlin Gremlin
SPARQL

Cypher Cypher, SQL/PGQ, UQL,
nGQL, GQL GQL GQL

Extensions for RDBMS

e |BM Db2 Graph: Gremlin transpiled to SQL

e PostgreSQL AGE extension: openCypher transpiled to SQL
e PostgreSQL: SQL/PGQ (WIP)

e Oracle Database 23ai: SQL/PGQ

e Microsoft SQL Server Graph: SQL/PGQ-like custom syntax

e SAP HANA Graph: openCypher for queries, GraphScript for algorithms

transactional

analytical

—

“MongoDB”

repeated joins =
n+1query problem

“Postgres”

recursive joins =
path queries

CAT Il

Graph Bl 1: Cheapest path queries

Find cheapest paths (weighted shortest)

Q(sci, 5c2)

name = $cl name = $c2

knows
t 3

7

knows.weight = 40 - V#reply

knows

-

Find cheapest paths (weighted shortest)

src trg W Q(“Spa”, “OSS”)
Ada | Dan name=“Spa” name = “0ss”
location Ada | Gia i

Finn | Dan
Finn | Gia

knows
t 3

7

knows.weight = 40 - V#reply

knows

-

Find cheapest paths (weighted shortest)

src
Ada
Ada
Finn
Finn

location

tl’g W Q(“Spa”, “OSS”)
Dan
_ name = “Spa” name = “0ss”
Gia
Dan c2
Gia

Ve

Bidirectional cheapest path algorithm? |5

Dijkstra's algorithm
("4 bidirectional

X not multi-threaded

Delta-stepping
"4 multi-threaded

leply

B

X not bidirectional

Graph Bl 2: Cyclic queries

Cyclic query: Return shared interests

t1 pl p2 t2

. knows rap Ada Bob rock
t @ @ rock Ada Bob rock

; ska Ada Bob rock

/< rap Ada Bob ska

v rock Ada Bob ska

. ska Ada Bob ska

@ rap Ada Bob DnB
rock Ada Bob DnB
@ @ ska Ada Bob DnB
rap Ada Bob trap
rock Ada Bob trap

ska Ada Bob trap
rap Ada Carl rap
@ rock Ada Carl rap

ska Ada Carl rap

Cyclic query: Return shared interests

t1 pl p2 t2

. rap Ada Bob rock

t @ rock Ada Bob rock

: ska Ada Bob rock

/‘ rap Ada Bob ska

. rock Ada Bob ska

ska Ada Bob ska

rap Ada Bob DnB

SELECT p1, p2, count(il) AS mutual_int rock |Ada |Bob | DnB

FROM knows_undir ku ska Ada Bob DnB

JOIN interest i1 rap Ada Bob trap

ON il.person = ku.pT rock | Ada Bob | trap

| JOIN interest i2 ska Ada Bob trap

tra on i2 .person = ku.p2 rap Ada Carl rap

AND i1.topic = i2.topic rock | Ada Carl rap

WHERE p1 < p2 ska Ada Carl rap
GROUP BY p1, p2;

Cyclic query: Return shared interests

t1 pl p2 t2
rap Ada Bob rock
rock Ada Bob rock
ska Ada Bob rock
rap Ada Bob ska
rock Ada Bob ska
ska Ada Bob ska
rap Ada Bob DnB
rock Ada Bob DnB
ska Ada Bob DnB
rap Ada Bob trap
rock Ada Bob trap
ska Ada Bob trap
rap Ada Carl rap
rock Ada Carl rap

ska Ada Carl rap

Cyclic query: Return shared interests

Ada

Carl

t1
rap
rock
ska
rap
rock
ska
rap
rock
ska
rap
rock
ska
rap
rock
ska

pl
Ada
Ada
Ada
Ada
Ada
Ada
Ada
Ada
Ada
Ada
Ada
Ada
Ada
Ada
Ada

p2
Bob
Bob
Bob
Bob
Bob
Bob
Bob
Bob
Bob
Bob
Bob
Bob
Carl
Carl
Carl

t2
rock
rock
rock
ska
ska
ska
DnB
DnB
DnB
trap
trap
trap
rap
rap
rap

Cyclic query: Return shared interests

t1 pl p2 t2
rap Ada Bob rock
rock Ada Bob rock

Ada ska Ada Bob rock
rap Ada Bob ska
rock Ada Bob ska
ska Ada Bob ska
rap Ada Bob DnB
rock Ada Bob DnB

Carl ska Ada Bob DnB
. rap Ada Bob trap
Triangle queries have big intermediates ock Ada Bob trap
ska Ada Bob trap
e interestl i knows X interest2: O(m?) o Ada Carl -
e X (interestl, knows, interest2): O(m?!~) rock | Ada Carl rap
ska Ada Carl rap

(Assuming m = |interest| = |knows| here.)

Graph Bl 3: Acyclic queries

More interests than friends
@ . knows @ Which person(s) have more
interest @ topics of interests than friends?
vV,
=56 o

More interests than friends

knows @ Which person(s) have more
t topics of interests than friends?
‘EIE" |.‘JI Bob<'II.‘\

@ Carl Eve
SELECT p1

FROM knows_undir ku
JOIN interest 1
ON i.person = ku.pT

GROUP BY p1
@ HAVING count(DISTINCT topic) > count(DISTINCT p2);

More interests than friends

More interests than friends topic | pl | p2

rock Bob Ada
ska Bob Ada
DnB Bob Ada
trap Bob Ada
pop Bob Ada
rock Bob Carl
ska Bob Carl
DnB Bob Carl
trap Bob Carl
pop Bob Carl

Multi-valued dependency:
pl-» topicand pl» p2

Many-to-many joins introduce a
predictable type of redundancy
which we can compress away!

topic

rap
rock
ska
rap
rock
ska
rap
rock
ska
rock
ska
DnB
trap
pop
rock
ska
DnB
trap
pop
rap
rap

pl

Ada
Ada
Ada
Ada
Ada
Ada
Ada
Ada
Ada
Bob
Bob
Bob
Bob
Bob
Bob
Bob
Bob
Bob
Bob
Carl
Carl

p2

Bob
Bob
Bob
Carl
Carl
Carl
Finn
Finn
Finn
Ada

Ada

Ada

Ada

Ada

Carl
Carl
Carl
Carl
Carl
Ada

Bob

Factorization

Factorization is a lossless compression method.

flat to factorized
topic pl p2

— {rap, rock, ska} x |Ada | x |{Bob, Carl, Finn}

{rock, ska, DnB, trap, pop} | x |Bob | x |{Ada, Carl}
{rap} x |Carl = x |{Ada, Bob}

SELECT p1
FROM knows_undir ku
JOIN interest 1
ON i.person = ku.pl
GROUP BY p1
HAVING count(DISTINCT topic) > count(DISTINCT p2);

topic pl p2
rap Ada Bob
rock Ada Bob
ska Ada Bob
rap Ada Carl
rock Ada Carl
ska Ada Carl
rap Ada Finn
rock Ada Finn
ska Ada Finn
rock Bob Ada
ska Bob Ada
DnB Bob Ada
trap Bob Ada
pop Bob Ada
rock Bob Carl
ska Bob Carl
DnB Bob Carl
trap Bob Carl
pop Bob Carl
rap Carl Ada
rap Carl Bob

Factorization

Factorization is a lossless compression method.

flat to factorized

B (o, ook, ska)

topic pl p2

Ada {Bob, Carl, Finn}
{rock, ska, DnB, trap, pop} Bob {Ada, Carl}
{rap} Carl {Ada, Bob}

Workloads heavy on many-to-many joins could benefit from

factorization but there are many open questions:

How to factorize long chains? Which queries benefit from
factorization? How to implement it efficiently? How to return a

factorized data structure to the client?

Where did we start from?

Advanced factorization methods (“d-representation”) also returning compact graphs

partOf 4 City pd location p4 Person 4 author M Message

cityname | postcode | population | person name | birthyear messageid day comment
Mol 2400 37,000 | Carl 1986 | NULL NULL NULL
Mol 2400 37,000 | Eve 2001 | M3 Sun alright
Mol 2400 37,000 | Eve 2001 | M4 Tue Hello
city name @ postcode | population person name birth year message
Mol 2400 37,000 | x | Carl 1986 | x | NULL
Eve 2001 | x | {{M3, Sun, alright),

(M4, Tue, Hello) }

Research papers

Worst-case optimal joins:

2013 AGM bound. SIAM J. Comput.

2014 Worst-case optimal joins. PODS

2019 Vertex ordering in worst-case optimal joins. VLDB

2020 Hash-based worst-case optimal join implementations. VLDB

Factorization:

2012 FDB: A query engine for factorised relational databases. VLDB
2015 Size bounds for factorized representations of query results. TODS
2024 Optimizing queries with many-to-many joins.

2025 Adaptive factorization using linear-chained hash tables. CIDR

Kuzu 2023 || Cypher

>_ Shell < Schema & Datasets % Settings B Docs

Single-node, in-process system

1 MATCH (a)-[bl->(c) L
2 RETURN x;

Uses a relational backend

BAXEB WYX

Supports Cypher

A
~
v

Strong focus on path queries,
worst-case optimal joins, and
factorization

[Graphflow

TigerGraph

Focus on path queries

GSQL language:

CREATE QUERY hello(VERTEX<Person> p) {
Start = {p};
Result = SELECT dst
FROM Start:src -(knows:e)- Person:dst;
PRINT Result;

(e)— D -

transactional

analytical

—

“MongoDB”

repeated joins =
n+1query problem

“Postgres”

recursive joins =
path queries

“Teradata”

many-to-many joins =

complex recursive joins
cyclic graph patterns
long acyclic patterns

What about schema and distribution?

Schema? Single-node vs. distributed?

no [optional
schema

strict schema

single-node
Neo4 CE
OrientDB / ArcadeDB / YouTrackDB
Kuzu

DuckPGQ

distributed

Neo4 EE

Cosmos DB

Titan / JanusGraph / HugeGraph
TigerGraph

Benchmarks

LDBC: Linked Data Benchmark Council

Mission: Membership:
Accelerate progress ~25 organizations
in graph data management ~100 individuals

LDBC®

ANT YOG E: ORACLE

C

GROUP Beijing Volcano (ByteDance) Labs
P aws . : |
o.2.e GRAPH\\VISE T G h
Alibaba Cloud ~—"" :51 Ne04qj) TigerGrap

p(‘@metry FalJEIITEI that Dot <5 RelationalAI @ uLtirn’

/A MEM QNebulaGraph &2 Huawe cLoup iBlrkbeCk *Sparsity

R P HUAWEI UNIVERSITY OF LONDON

. b
k<>< E“ %Hﬂ3§ @ i ® Predictable Labs, Inc % :EEQE@
" CREATE LINK JCC Consulting, Inc. <2 , Inc. StarGraph

Members

| database companies

| hardware vendors

cloud providers

researchers

0o 0o 3o (o

LDBC encourages members to..

/ S\ L A o

2] =

= e
collaborate compete
on standards on performance

G

Benchmarks and query languages

“Interactive”
workload

Q9(Sname, Sday)

author

creation date < Sday

SQL:1992

SELECT DISTINCT m.id
FROM (
SELECT k.p2id AS id
FROM person Pa,
knows k
WHERE Pa.name = $name
AND Pa.id = k.plid
UNION
SELECT k2.p2id AS id
FROM person Pa,
knows k1,
knows k2
WHERE Pa.name = $name
AND Pa.id = kl.plid

AND k1.p2id = k2.plid
AND k1.plid <> k2.p2id

) Pb,
Message m

WHERE Pb.id = m.authorId
AND m.creationDate < $day

SQL/PGQ (SQL:2023)

SELECT id
FROM GRAPH_TABLE (socialNetwork
MATCH ANY ACYCLIC
(Pa:Person WHERE Pa.name = $name)
-[:knows]-{1,2} (Pb:Person)
-[:author]-> (m:Message)
WHERE m.creationDate < $day
COLUMNS (m.id))

GQL

MATCH ANY ACYCLIC
(Pa:Person WHERE Pa.name = $name)
-[:knows]-{1,2} (Pb:Person)
-[:author]-> (m:Message)

WHERE m.creationDate < $day

RETURN DISTINCT m.id

ops/s 4 °

“Interactive” 128k -+
workload
64k |
SF100: 25x speedup in 4y o
71x price-performance ® ®
32k +
All of these systems are [EETE ®
developed by vendors o
based in China with a O AtlasGraph
strong VC ecosystem 8k + © @ CreateLink GalaxyBase

© GraphScope
@ Huawei GES
4k + ® @® TuGraph

2020 2021 2022 2023 2024 2025 year

ops/s 4 o
“Interactive” 128k -
workload Huawei GES:
cak | declarative (Cypher),
. uses factorization
SF100: 25% speedup in 4y
71x price-performance 39k L
All of these systems are [T R ®
developed by vendors o
based in China with a O AtlasGraph
strong VC ecosystem 8k + © @ CreateLink GalaxyBase
© GraphScope
@ Huawei GES
4k + ® @® TuGraph
| | | | | | -
2020 2021 2022 2023 2024 2025 year

“Business Intelligence”
workload

Analytical workload
Metric 1: Power

Metric 2: Throughput

Q11(Sctry)

i

Q19($c1, $c2)

=

“Business Intelligence” Audited results

workload
_ 100
Metric 1. Power @ TigerGraph 1,000 (><3)
10,000
Metric 2: Throughput
», ™
TuGraph 30,000

More audits coming this year!

Financial Benchmark Developed by the Ant Group, Create Link, Ultipa, etc.

Transactional workload e Strict latency requirements (P99 <100 ms)
e Relaxed consistency guarantees
Metric: Throughput e Truncation (sampling) on most recent edges
e Interesting queries, e.g. REM path queries
Target: Distributed systems (Regular Expression with Memory)
Relaxed consistency requirements tl 2 t3

t1.5>t2.9 t1.5=>t2.9
tl.date <t2.date tl.date<t2.date

Using the benchmarks

Benchmark kit

Specification

Academic paper

Data generator
Pre-generated data sets
Driver

2+ implementations

LDBC

DB] 9 Nov 2022

arXiv:2001.02299v8 [

LDBC®

The graph & RDF
benchmark reference

The LDBC Social Network Benchmark
(version 2.2.1)

The specification was built on the source code available at
https://github.com/ldbe/1dbe_snb_docs/releases/tag/v2.2.1

The LDBC Social Network Benchmark:
Business Intelligence Workload

Gabor Szamyas Jack Waudby
cwr Neweastle University

Benjamin A. Steer Dévid Szakillas
Pometry Independent contributoe

Altan Birler Mingxi Wu

Technische Universiit TigerGraph
alan birler@tum.de

ABSTRACT

Yuchen Zhang Peter Bonez
TigerGraph cwi

mingsi wu@tigergraphcom yuchen shang@Ugergrsphoom boncz@cwial

“Tabl 1 The SNB Bl worklosd il n the spacs betwsen LDBC
NB. Lis 2 raph OF

e graph OLAP e

®
analytical dat sysems capable
Thi paper marks the nalation of smost decade ofresearch
in acadenia and ndusty viathe Linked Dat Benchmark Councl

Largeting sys-
tems with domain-specific query languages. We denote the
data models and features covered, and whether 3 anguage is

b snalytial dtabase benchimarks n many spects. s bae 5 3

benchmark. Notation: G yes, O o, @+ linited coverage.

omens, whoe value propertis follow skewed and coreelated

emporal gaph where ll nodes and edgesFllow span-based
oles with temporalskew enabling esistic and consistent tempo-
b nsets and ccursve) dlees The query workload eplotig
this ke and corelation i ased o LDBC's “choke point”riven
i odology and 1 :

st adoption of ‘arsmeler cursio” i an anlyteal benchmark,

‘peak sngl-qoery prformance (poweand sstined coneurrent

‘e presct cxperimental vt o relatonal i graph DBMS
‘Notethatthese do ot constitute an offcisl LDBC Benchmak Re-
vl —anly e el e thistademarked term.

T——

GiborSsmyuJack Wby, B A Scer, Divid el Al
Bl Mg Toe LB Socl

S ——— i
0

e o

B] S

fre— e
H

& H

3 H

e H

1N

Anaysing he conneton patens i grphs s teadily expan

s o ot mlytics and i ot t sl gro condersly

importanc (7)1 s elected i the grph

shaped data as reprsented i data model such s (il RDF

and increasingly propetygraphs (5. While graph analytis i of-

LR, 108 177
N ——

PVLDR Avifact Availabiiy:

networks,andentecpriseknowledge graphs (6], graph challenges

ar o found i trdinsl retions dat warshousesand moders

dataakes, where lomplict gaph uk it connectin paterns

formed beween tables that refr o cac othes through oins slong
onig . = +

Y

e e ooy e e s pmity

e modern gruph dta managenment tck,a group of ndusry s
acadenic organzations funded the Linked Dat Benchmark Cour
L (LDBC) in 2012, orginally a Eutopean Union-funded prject.

https://arxiv.org/pdf/2001.02299.pdf
https://arxiv.org/pdf/2001.02299.pdf
https://www.vldb.org/pvldb/vol16/p877-szarnyas.pdf
https://www.vldb.org/pvldb/vol16/p877-szarnyas.pdf

LDBC has “TPC-grade” benchmarks

Auditing: an old model but it's still relevant

Certified auditor, full disclosure report

3-year total cost of operations (licenses, support)

Multi-week auditing process

5 years of auditing: published =50 results and had to retract 0

O System: GraphScope Flex 0.26.1 100 Alibaba Cloud ecs.r8a.16xlarge 130,098.36 ops/s
64xAMD EPYC 9T24 @ 3.7GHz

O Test sponsor: Alibaba Cloud
vCPUs, 512GiB RAM

O Date: 2024-05-14

O Queries implemented in: C++ 300 Alibaba Cloud ecs.r8a.16xlarge 131,263.87 ops/s
64xAMD EPYC 9T24 @ 3.7GHz

O System cost: 738,724 RMB VCPUs, 512GiB RAM

(102,128.22 USD)

LDBC overview

2012 2015 2020 2025
New members ﬂ H
1 2 2 1 1 1 1 1 2| |IP
Benchmarks
Audited results IE
Publications . .

on schema & language

ISO standards

Challenges
in the graph database space

Decline

The hype cycle moved over to Al

The confusion doesn't help anyone!

e “Xisgraph database system” > which category?
e “Xdoesn't needjoins” » unnecessary and confusing conceptual shift

e “graph databases will replace RDBMSs” > this is very unlikely

There are niche use cases, which systems over-optimize for, causing fragmentation

Popularity Changes

1500

1250

1000

750

500

250

DB-Engines ranking for graph

2014 2016 2018 2020

2022

Popularity Changes

1500

1250

1000

750

500

250

DB-Engines ranking for graph

2014 2016 2018 2020

2022

2024

Summing up

Graph databases <> joins

Graph databases have syntax sugar and optimizations for joins

If you have 10 joinsin a query and it doesn't work well, try a graph database:

“MongoDB”

Fragmented landscape: graph databases are very specialized

“Postgres”

Check licenses and performance results

“Teradata”

Sources

Information sheets (all of them contain inaccuracies!):

e Database of databases: https://dbdb.io/

e DB-Engines Ranking of Graph DBMS: https://db-engines.com/en/ranking/graph+dbms
e Wikipedia page of vendors

Recommended readings / presentations:

e Amine Mhedhbi: Taming Large Intermediate Results for Joins over Graph-Structured
Relations: A System Perspective
Kuzu blog: https://blog.kuzudb.com/

[)

A eulogy for RedisGraph: https://www.bloorresearch.com/2023/08/a-eulogy-for-redisgraph/

Big thanks for discussions to Akon Dey, Amine Mhedhbi and Daniel ten Wolde.

https://dbdb.io/
https://db-engines.com/en/ranking/graph+dbms
https://docs.google.com/presentation/d/10sa2yij7av8u7w4MmnV0xFwxtvEG54DjLqZz_X5Cw8c/edit#slide=id.g129f6cfa995_0_437
https://docs.google.com/presentation/d/10sa2yij7av8u7w4MmnV0xFwxtvEG54DjLqZz_X5Cw8c/edit#slide=id.g129f6cfa995_0_437
https://blog.kuzudb.com/
https://www.bloorresearch.com/2023/08/a-eulogy-for-redisgraph/

B

The graph & RDF
benchmark reference

