Passive Network Fingerprinting

Luca Deri<deri@ntop.org>
@lucaderi

Who am |
o2

*ntop founder (http://www.ntop.org): VY
company that develops open-source '
network security and visibility tools:

ontopng: web-based traffic monitoring and security

-NDPI. deep packet inspection toolkit

- PF_RING: High-Speed Packet Capture
* Author and contributor to various open source software tools.
*ecturer at the CS Dept, University of Pisa, Italy.

http://www.ntop.org

NDPI in a nutshell

«C-based open-source library providing:

odeep packet inspection engine for network visibility: protocol classification,
metadata extraction, flow risks computation

* basic blocks for a cyber-security application

- flow risks: an indication that in the flow there is something unusual/dangerous to pay
attention to

+ ~60 different flow risks: self-signed certificate, possible SQL/RCE injection, suspicious DGA domain,
invalid character in SNI...

calgorithms for data analysis: data forecasting, anomaly detection, clustering
and similarity evaluation, (sub-)string searching and IP matching,
probabilistic data structures,...

* Available on GitHub, LGPL v3

Agenda

*What We'll Cover in This Talk
o Fingerprints tutorial
- Qverview of nDPI supported fingerprints
o |nitial flow fingerprint (this talk)

*What We'll NOT Cover in This Talk
o Post-connection behavioural fingerprint (not this talk)

What is a Network Fingerprint

« Fingerprinting refers to the process of identifying and gathering specific
information about a system or network to create a unigue traffic profile or
“fingerprint”.

» The term "unique’ needs to be interpreted:

o Family: this DHCP packet is generated by an iOS device.

o Application: this TLS flow is generated by the Irickbot malware.
*References

o https://medium.com/@nayanchaure601/os-fingerprinting-ab5c4d70ec22

o https://medium.com/thg-tech-blog/fingerprinting-network-
packets-53ee32ddf07a

ntop FOSDEM 2025 - ntop.org https://github.com/ntop/nDPI 5

https://en.wikipedia.org/wiki/Trickbot
https://medium.com/@nayanchaure601/os-fingerprinting-ab5c4d70ec22
https://medium.com/thg-tech-blog/fingerprinting-network-packets-53ee32ddf07a
https://medium.com/thg-tech-blog/fingerprinting-network-packets-53ee32ddf07a

How can | Use a Fingerprint?

*|t can then be used to identify and categorise different devices, applications,
or users based on their specific characteristics and behaviours.

* Typical use cases:

o Label network traffic with an application. Example: this HTTPS connection
was made by Apple Safari.

o Network segmentation: fingerprint DHCP packets to automatically assign
outdated Windows hosts to specific VLANS.

o Cybersecurity: detect unusual behaviour or traffic patterns that are
unexpected for specific hosts (e.g. label a device as an iPad and detect
it uses services typical of Android devices)

Active vs Passive [1/2]

Fingerprints can be determined using passive or active probing technigques with
usual pro (no traffic, no fingerprints) / cons (traffic is injected in the network, hence
we're not invisible). f o s

Am e mEXL RewmEFs , = & 8 & ftH

. | tep.straam eq 36 and tls [X] ': +
° PaSSlve No. Time Source Destinaticn Dport Protc
F. . ‘t | | 't d b | 948 6.037852 192.168.1.29 17.248.269.64 443 TLS)
1033 €.671007 17.248.2€9.64 192.168.1.29 50383 TLSY
|ngerpr|n S are Ca Cu a e y I 1047 6.1343062 17.248.709.64 192.168.1.29 50383 TLSy
H H H 1849 €.270865 192.168.1.29 17.248.269.64 443 TLS)
passively observing network traffic {| losa coaowels 1724020000
| 1852 6.302062 17.248.209.64 192.168.1.29 50383 TLSy

and prodUC|ng the flngerprlnt 1054 6.302154 17.248.2€9.64 192.168.1.29 50383 TLS)
accordlng tO "de‘faCtO" teChnlqueS Extension: cxtcndzd_mastcr_sc:'ct (lc;d] ’

Extension: renegotiation_infe (len=1)
e \JAS/\JA4 Extension: suppcrted_groups (len=12)
g . Extension: ec_point_formats (len=2)

Extension: application_layer_protocol_negotiation {len=14)

Extension: status_request (len=5)

* As shown later, fingerprinting Exerslom sloaturs slgwitims Clorat)
encrypted traffic has interesting Extension: pok_key exchange_soaes. (1erez)
. N Extension: supported_versicns (len=11) TLS 1.3, TLS 1.2, TLS 1.1, TLS 1.0@
features as ciphers and extensions

Extension: compress_certificate (len=3]
ease fingerprint calculation.

xteusion: Re

[JA4_r: t13d2014nh2_@06a,002f,0€835,609¢,Ad%d,1301, 1302, 1303, c368,cAAI, c@da, cO12,cB1 :
[JA3 Fullstring: 771,4B65-4866-4867-49196-49195-52393-19200-19199-52392-19162-1916
[JA3: 7739660b0e defa24a7 F2b8eb6985bF37]

4
nto p FOSDEM 2025 - ntop.org https://github.com/ntop/nDPI 7

Active vs Passive [2/2]

o Active fingerprinting is implemented by actively sending packets to a
target machine in order to receive a response.

> Port scan can be considered a basic fingerprinting technique as it can
be used to determine the operating system or read the version of
specific services (e.g. read the HTTP server version and use it to find
vulnerabilities) for attacking it.

o Some active fingerprinting tools:

* nmap a popular network scanner including host discovery and service and operating
system detection.

- JARM a TLS server fingerprinting application developed by Salesforce. It provides the
ability to identify and group malicious TLS servers on the Internet.

https://nmap.org
https://github.com/salesforce/jarm

nDPI \ Advantages and Limitations

«Passive fingerprinting is useful when conducting network reconnaissance or
monitoring network behaviour over extended periods as it is:

o Non-intrusive nature
o Able to gather information without alerting the target.
*However, passive fingerprinting has limitations

o |t may not provide as detailed or accurate information as active
fingerprinting since it relies solely on observed behaviours (e.g. in TLS 1.3
server hello and certificate are encrypted and thus they cannot be used
albeit very useful).

o Some techniques may be subject to noise or interference, impacting the
reliability of the gathered information.

Fingerprinting Methods

*Protocol Fingerprint

> Analyse a specific protocol (e.g. DHCP fingerprint, or TCP behaviour for
OS fingerprinting) in order to compute the expected fingerprint. Example:
Window hosts do not set the Timestamps option in TCP SYN packets.

* Content Fingerprint
o Create the fingerprint based on the content of specific protocol.
Examples:

* HTTP User-Agent

* Android vs iOS vs Windows can be passively detected looking at DNS domain names
gueries (e.g. thinkdifferent.us and connectivitycheck.android.com)

* Firefox connects via TLS to firefox.settings.services.mozilla.com

http://thinkdifferent.us
http://connectivitycheck.android.com

Using Fingerprinting in Real Life

*Browser fingerprinting
Collects information about a web browser and device where it's running on
including browser type, version, operating system, screen resolution, installed
plugins. This creates a unique “fingerprint” that can be used to track the user
across different sessions and websites.

*Policy Enforcement (OS/Device Fencing)
Restrict to specific VLANs/block old/specific devices/OSs by looking at the
device MAC address or initial DHCP request. This technique plays an important
role in securing OT (Operational Technology) networks.

« Traffic Prioritisation
Disable specific traffic (e.g. Zoom Video) in case of limited available
bandwidth.

How to Create a Fingerprint

As seen with pOf, creating a fingerprint is usually not rocket science if
the following principles are satisfied:

o Extract protocol/application unique characteristics.

o |gnore parameters that are random (e.g. TLS GREASE™), request-
specific (e.g. a hostname or the SNI).

o Concat parameters after transformations (e.g. sort) to make the
string fingerprint and avoid the fingerprint to be circumvented.

o Optionally hash the fingerprint to create a fixed-length fingerprint
string.

*GREASE (Generate Random Extensions And Sustain Extensibility), a mechanism to prevent extensibility failures in the TLS
ecosystem. It reserves a set of TLS protocol values that may be advertised to ensure peers correctly handle unknown values.

TCP/IP Stack Fingerprinting [1/2]

* As discussed earlier, TCP/IP stack fingerprinting is one of the most
popular methods for detecting the OS from network traffic.

« Unfortunately there is no single standard/representation hence there
are various formats produced by the many available fingerprint tools.

* The fingerprint format is the following
<TCP Flags>_<TTL>_<TCP Win>_SHA256(<Options Fingerprint>)

-— Normalize TTL

ip_ttl = tonumber(ip_ttl)

if(ip_ttl <= 32) then ip_ttl = 32 Note:
elseif(ip_ttl <= 64) then ip_ttl = 64
elseif(ip_ttl <= 128) then ip_ttl = 128
elseif(ip_ttl <= 192) then ip_ttl = 192
else 1p_ttl = 255 end

- The fingerprint is computed on the SYN (req) packet
- For IPv6 we use Hop Limit instead of TTL

ntop

TCP/IP Stack Fingerprinting [2/2

Frame 85: 74 bytes on wire (592 bits), 74 bytes captured (592 bits) on interface unknown, id @
Ethernet II, Src: Intel_aB:1f:ec (3c:a9:f4:a8:1f:ec), Dst: TechnicolorD_e@:86:62 (20:b@:01:e0:86:62)
Internet Protocol Version 4, Src: 192.168.1.128 (192.168.1.128), Dst: 89-96-168-170.ip12.fastwebnet.it (89.96.108.178)

Source Port: 35830

Destination Port: 8080

[Stream index: 5]

[Stream Packet Number: 1]

[Conversation completeness: Incomplete, DATA (15)]
[TCP Segment Len: 0]

Sequence Number: @ (relative sequence number)
Sequence Number (raw): 510107882

[Next Sequence Number: 1 (relative sequence number)]
Acknowledgment Number: @

Acknowledgment number (raw): @

1010 = Header Length: 40 bytes (18)

Window: 64240

[Calculated window size: 6424@]

Checksum: @x4bd1l [unverified]

[Checksum Status: Unverified]

Urgent Pointer: @

Options: (20 bytes), Maximum segment size, SACK permitted, Timestamps, No-Operaticn (NOP), Window scale

[Timestamps]
[Time since first frame in this TCP stream: 0.000000000 seconds]
[Time since previous frame in this TCP stream: ©.000000000 seconds]

ntop Extensions "
TCP Fingerprint: 2_64_64240_1a766bf8a57a

0ua0 20 be 01 e@ 86 62 3¢ a3 f4 a8 1f ec 08 00 45 0O¢ occiE ceoccs |=e

0010 00 3c db 5¢c 40 00 4@ 06 d7 2c cO a8 01 80 59 6@ < \@@ c,ccc0Y

0020 6c aa 8b 6 1f 90 1e 67 a0 ea 00 00 00 00 a0 62 1------ DEEEEEEEEE

0630 fa f@ 4b d1 00 00 82 04 05 b4 04 02 08 0a ed4 36 solCevere wnnennn 6

‘O 7 1ce Fingerprint (ntop.tcp_fingerprint) Packets: 113 - Displayed: 5 (4.4%)
FOSDEM 2025 - ntop.org https://github.com/ntop/nDPI

14

Some TCP/IP Stack Fingerprinting Findings

While studying the TCP fingerprints we have noted some facts.

Windows
*Does not use the timestamp (8) option.
» Has a default TTL of 128, vs 64 used on Linux etc.

i0S/iPadOS/macOS (Intel)
*Send SYN+ECE+CRW. Others (including macOS Silicon) just SYN.

Options: (24 bytes), Maximum segment size, No-Operation (

) Op“OnS (|OS but not |PadOS) end TCP Option - Maximum segment size: 1460 bytes

TCP Option - No-Operation (NOP)
Wlth a dOUble EOL TCP Option - Window scale: 5 (multiply by 32)

' TCP Option - No-Operation (NOP)
TCP Option — No-Operation (NOP)
TCP Option - Timestamps: TSval 1148500268, TSecr @
TCP Option — SACK permitted
TCP Option - End of Option List (EOL)
TCP Option - End of Option List (EOL)

TCP/IP Stack Fingerprinting and Cybersecurity

Frame 1: 60 bytes on wire (480 bits), 68 bytes captured (480
Ethernet II, Src: 76:ac:b9:35:30:da (76:ac:b9:35:30:da), Dst:
Internet Protocol Version 4, Src: 192.168.10.145 (192.168.10.
‘Transmission Control Protocol, Src Port: 49175, Dst Port: 88¢

Source Port: 49175

Destination Port: 8888

[Stream index: 8]

[Stream Packet Number: 1]

[Conversation completeness: Incomplete (35)]

[TCP Segment Len: 9]

Sequence Number: @ (relative sequence number)
Sequence Number (raw): 253744456
[Next Sequence Number: 1 (relative sequence number)]

Acknowledgment Number: @

Acknowledgment number (raw): @

0101 = Header Length: 20 bytes (5)
‘Flags: @xe02 (SYO)
Window: 65535

[Calculated window size: 65535]

Checksum: @x5297 [unverified]

[Checksum Status: Unverified]

Urgent Pointer: @
[Timestamps]

https://zmap.io/

ntop

FOSDEM 2025 - ntop.org

Frame 1: 6@ bytes on wire (480 bits), 60 bytes captured (480 bits)
Ethernet II, Src: 76:ac:b9:35:30:da (76:ac:b9:35:30:da), Dst: PCSSyste
Internet Protocol Version 4, Src: 192.168.10.145 (192.168.10.145), Dst

Source Port: 46998

Destination Port: B888

[Stream index: 0]

[Stream Packet Number: 1]

[Conversation completeness: Incomplete (35)]
[TCP Segment Len: 8]

Sequence Number: © (relative sequence number)
Sequence Number (raw): 1163206847
[Next Sequence Number: 1 (relative sequence number)]

Acknowledgment Number: @
Acknowledgment number (raw): ©
0101 = Header Length: 20 bytes (5)

Window: 1024

[Calculated window size: 1024]
Checksum: @xd5eb [unverified]
[Checksum Status: Unverified]

Urgent Pointer: 0_g&
[Timestamps] *ﬂ

https://github.com/robertdavidgraham/masscan

https://github.com/ntop/nDPI 16

TLS/QUIC Fingerprinting [1/2]

«Contrary to the TCP/IP stack (usually) part of the kernel, for TLS/
QUIC encoder/decoder is implemented by a user-space library
hence every application sitting on the same OS can potentially use
different fingerprints.

TLS ClientHello Possible Clients True Client
v Clie 1 (. \
OpenSSLo Q‘
i : : OpenSSL
7 ,< TL)r gg@' O (v:1.0.1x)
. S

nfop FOSDEM 2025 - ntop.org https://github.com/ntop/nDPI 17

TLS/QUIC Fingerprinting [2/2]

*JA4 is the JA3 successor and it comes with additional fingerprints
named JA4+ (e.g. for TCP, HTTP, SSH...). While JA4 for client
fingerprinting has been released under BSD 3-Clause, all other are
patent pending and subject to license. nDPI implements only JA4.

JAA4: TLS Client Fingerprint

« Protocol: TCP = “t”, QUIC = “g"

e TLS version: 1.2= “12" 1.3 = “13"

« SNI: SNI present = “d” (to deamain), no SNI = “i” (to IP)
« Number of cipher suites

« Number of extensions

« First ALPN value (00 if no ALPN)

JA4: t13d1516h2_8daaf6152771_02713d6af862

JA4_a JA4 b JAd ¢

» Truncated SHA256 hash of the cipher suites, sorted
» Truncated SHA256 hash of the extensions, sorted + signature
glgorithms

https://github.com/FoxIO-LLC/ja4

/

Missing JA4 a

ntop

Browser Fingerprints [1/2]

local ja4_db = {

['902e81d9f7c9f_736b2aled4d3']
['07beBc029dc8_ad97e2351c08']
['07be@c029dc8_d267a5f792d4 "']
['9a330963ad8f_c905abbc9856"']
['9a330963ad8f_c9eaec7dbabs']
['168bb377f8c8_ale935682795"']
['24fc43eb1c96_14788d8d241b']
['24fc43eb1c96_14788d8d241b']
['24fc43eb1c96_845d286b0d67'"']
['24fc43eb1c96_845d286b0d67"']
['24fc43eb1lc96_c5b8c5blcdeh']
['2a284e3b0c56_12b7alcbh7c36']
['2a284e3b0c56_f05fdf8c38a9']
['2b729b4bf6f3_9e7b989%ebec8']
['39b11509324c_ab57fa081356"']
['39b11509324c_c905abbc9856"']
['39b11509324c_c9eaec7dbabs4']
['41f4eabbe9c2_06a4338d0495']

FOSDEM 2025 - ntop

momw mwomw mwomw mwowomwowowowowowwwnn

org

'Chrome',
'"Firefox',
'Firefox',
'Chrome',
'Chrome’,
'"Anydesk',
'Chrome’,
'Safari’',
'Chrome’,
'Safari’',
'Safari’,
'Safari’',
'Safari’',
'IcedID',
'Chrome’',
'Chrome’,
'Chrome’,
'Chrome',

h

ps

github.com/ntop/nDPI

Browser Finger

prints [2/2

ene M safari_i0$15.8.pcapng

AW Jd@® ‘] Q T -

(n =)+
No. Time Source Cestneton Pretocol Infc | |

37 9.BU917€@

1.7%412¢
42 1.7%4132
43 1.R24412
44 1.827846
45 1.827995
46 1.828022
47 1.8321€9
48 1.832112

192.168.2.6

192.168.2.6
192.168.2.6
mail-d:giralocean.ntop.org
mail-digitalocean.ntop.org
mail-digitalocean.ntop.org
mail-d:igitalocean.ntop.org
192.168.2.6
102.168.2.6

nail-digitalocean.ntop.ory
neil-digitalocean.ntop.org
192.168.2.5
192.168.2.5
192.168.2.5
192.268.2.5
nell-digitalocean.ntop.ory
nail-digitalocean.ntop.org

17.248.209.66

Frame 1: 78 bytes on wire (524 bits), 78 bytes captured (624 bits| on interfzce bridgel0@, id @

Ethernel II, Src: @e:9c¢:18:95:77:¢1 (0e:9C:18:85:77:c1), Dst: 9e:58:30:7a:22:64 (92:58:30:74:22:64)

Internet Protocol Version 4, Src: 192.168.2.6 (192.168.2.6), Dst: 17.248.2€9.66 (17.248.2€9.66)

2000 9e 58 3¢ 7a 22 64 0e
910 0@ 6 00 99 40 ee 4@
0020 dl1 42 ¢8 07 01 kb 3a
0030 ff 1f 8c 93 00 €@ 02

_Q 7 zafari_jCE15.8.00apng

ntop

9c 18 95 77 ¢l 98 20 45 @0
06 94 cf ce a8 92 26 11 18
aS cd f2 6¢ 00 90 20 b0 c2
04 95 b4 61 03 93 25 €1 61

FOSDEM 2025 - ntop.org

443
51208
51208
512e8
51208

443

13

TR
TLSV1.3 &
TCP -4
TLSV1.3
TLSV1.3
TLSV1.3
TCP

TCP

Fackets: 76

Safari
Safari
Safari
Safari
Safari
Safari
Safari

51207 - 443 [ACK] !

51208 - 443 [ACK] .
Client Hello (SNI=om
443 - 51208 [ACK] !
Server Hello, Cham
Application Data
Application Dats, .
51208 - 443 [ACK] !
51208 - 443 [ACK] e

Profile: Defeult

https://github.com/ntop/nDPI

20

Additional nDPI Fingerprints

*RDP (Remote Desktop Protocol)

*SSH (Secure Shell)

*DHCP (Dynamic Host Configuration Protocol)

*OpenVPNs (and dialects)

*Obfuscated TLS (encrypted tunnels based on a TLS dialect)
*Fully Encrypted Protocols (ShadowSocks, VMess, Trojan,...)

Thank You, and See you at PacketFest

=" 5 4% -
Packethest 25,
Where ntop and Wirg.shark Communities Meet €

May 7-9, Zurich, Switzerland
https://www.packetfest.ch

ntop

