
Eva Infeld

Katzenpost: Building Privacy
Infrastructure in Go



Intro

BUILDING PRIVACY SOFTWARE IN GO

github.com/katzenpost
evainfeld@riseup.net

Things I will talk about:
▶ Why? Because surveillance is bad and privacy is essential, and the

world is on fire.
▶ A quick look at our design.
▶ Tasks we have funding for (that you can help us with)
▶ Usable code! Example: hybrid post-quantum cryptography

The slides will be dense, for the video’s sake. The most important things
will be highlighted.



Motivation and design

WE NEED TO TALK ABOUT SURVEILLANCE

Realistic modern adversaries are GLOBAL, ACTIVE, SOPHISTI-
CATED and HAVE CONTEXT (+ may have quantum computers)

▶ Global (and a lot less is enough for statistical analysis)
▶ Can compromise parts of the network
▶ Willing to make decisions based on partial evidence and statistical analysis
▶ Have large computational resources and can do advanced cryptanalysis
▶ May have quantum computers soon
▶ Can supplement collected data with rich context of already gathered data on all

users from other sources

This is beyond the threat model of leading anonymity systems.



Motivation and design

EXAMPLES

Tor doesn’t protect against attackers that see both ends of the
connection. (But is very good at doing some other things, and the best
in its class.)

Neither do VPNs, and they are even vulnerable to someone just watching
the VPN, plus they don’t have Tor’s suite of additional protections and
good software. Cover traffic doesn’t really change that.



Motivation and design

RESISTING SURVEILLANCE

The only way to protect metadata is to give up nothing, because
even the smallest correlations become deadly over time.

▶ No message content (we do this with encryption.)
▶ No social graph data (i.e. who is talking to whom.)
▶ Hide user location from as many parties as possible, including their contacts.
▶ No observable traffic patterns

Not an exhaustive list.

This is extremely difficult and every design decision has tade-offs.



Motivation and design

OUR DESIGN PRINCIPLES

▶ Your connection always looks the same.
▶ All interactions with servers, positioned behind the mix network, are symmetric

round-trips whether you’re sending or retrieving. (Echos)

▶ All server interactions are indistinguishable from picking a server at random.
▶ Persistent relationships between users leak statistical information, minimize it.
▶ Second party anonymity - your contacts are also seen as a point of failure.
▶ No forced interactivity. So can’t have conventional TCP applications.



Motivation and design

WHERE TO FIND OUT MORE

https://arxiv.org/abs/2501.02933

We will likely rename the whole project to EchoMix soon.



Where we are at and what you can help with

DEVELOPMENT (Go, AGPLv3):
HERE ARE SOME FUNDED NEAR FUTURE TASKS

A mix network, Katzenpost/EchoMix
(https://github.com/katzenpost/katzenpost

1. Implementing new cryptographic protocols for group chat in progress
2. Implementing new cryptographic protocols for exchanging credentials in progress
3. Making libraries more modular and accessible in progress/to do
4. Some design tasks in progress

A chat client that uses the network, Katzen/Echo
https://github.com/katzenpost/katzen

1. Restructuring the database almost done
2. Adding attachment functionality to do
3. Implementing cutting edge audio processing in progress



Where we are at and what you can help with

SOME BIG PICTURE GOALS

In the longer term, we are still shaping the workflow and you can shape it with
us. We have avenues to secure funding for well planned goals.
In the long run we want:

▶ More audits of the code.
▶ Mix network software that can be easily instantiated if you want your own

network.
▶ Mix network instance (we have one, Namenlos) that you can easily

connect your services to.
▶ A messenger application that can actually resist realistic adversaries, and

has all the functionality and ease of use that today’s users expect.
▶ Easy-to-use-in-your-project code for all the elements we bring to the table:

crypto, messaging protocols, media processing tools, network tools, etc.
▶ Formalizing our designs through a research program, including PIR,

evolving communication protocols, improving theoretical foundations.



HPQC

USE OUR CRYPTO

Hybrid post quantum cryptography combines the security of classi-
cal cryptography (usually elliptic curves), and cryptography resistant to
known quantum algorithms.

hybrid post-quantum cryptography library
HPQC

signatures
github.com/katzenpost/hpqc/sign

NIKE
github.com/katzenpost/hpqc/nike

non-interactive key exchange
(Diffie-Hellman-style, with public keys)

KEM
github.com/katzenpost/hpqc/kem

key encapsulation mechanism



HPQC

USE OUR CRYPTO

Some of the cryptographic primitives in HPQC (+ ways to combine them):
NIKE:

▶ X25519
▶ X448
▶ Diffie-Hellman
▶ CSIDH
▶ CTIDH
▶ . . .

KEM:
▶ All of the above through a NIKE to KEM adapter
▶ M-KEM
▶ ML-KEM
▶ Kyber768
▶ X-Wing (X25519 + ML-KEM-768)
▶ . . .

Signatures:
▶ Ed25519
▶ SPHINCS+
▶ . . .



HPQC

USE OUR CRYPTO



conclusion

TAKEAWAYS

github.com/katzenpost
katzenpost.network (or soon echomix.network)

evainfeld@riseup.net

Takeways:
▶ Surveillance is bad and privacy is good, and we need

stronger anonymity software than we already have.
▶ Our cool design does things other designs don’t.
▶ We have some funding and welcome your help (but

talk to me first!)
▶ Use our code! It’s AGPLv3

Katzenpost/Echomix development has been funded by EU Horizon2020
grant ID: 653497, NLnet, Wau Holland Stiftung, Protocol Labs, Zero
Knowledge Network.


	Intro
	Motivation and design
	Where we are at and what you can help with
	HPQC
	conclusion

