
Gianluca Guida, 01/02/2025

MACHINA
Lessons And Insights From Reimplementing the Mach 
Microkernel.



About me.
Hello! 👋 

• Italian in Cambridge (England) 

• Hypervisors, Operating Systems, Security 

• Currently at Rivos Inc. 

• Past employers amongst others: HP, Bromium, Citrix, XenSource 

• Ask me about synthesizers!

NB: This talk is about a personal project. Not affiliated with my current or 
past employers.



About this talk.
Why would anyone reimplement Mach?

• Part I: History And Motivation 

• Part II: A Brief Introduction to Mach 

• Part III: The MACHINA reimplementation. 

• Part IV: Lessons learned.



Part I: History and Motivation.



History and Motivation.
A Brief Introduction To NUX.

• NUX: a kernel framework for prototyping 
OSes quickly. 

• https://nux.tlbflush.org 

• Original motivation to port Murgia Hack 
(https://mhsys.org) to modern hardware. 

• Underlying architectural assumptions 
similar to MH kernel. 

• Result: MH can now run on AMD64 and 
RISCV64. 

• Tomorrow’s talk in AI devroom will be more 
detailed about NUX and its architecture.

APXH NUX 
Kernel

NUX 
User

https://nux.tlbflush.org
https://mhsys.org


History and Motivation.
Mach as a stress test.

• Porting MH to NUX not hard  

• MH has no kernel threads. 

• MH has one user thread per process. 

• Mach is possibly the farthest thing from MH kernel 

• Uses kernel threads. 

• Requires implementation of dynamic, refcounted objects. 

• Rich VM that interacts in almost mysterious ways. 

• Extensive use of threads in userspace.



History and Motivation.
Mach as a personal unfinished business.

• Been interested in the Mach microkernel since the 1990s 

• Only nostalgia can make the memory of downloading GNU Hurd via modem and 
compiling it on a 486 a beautiful one 

• Mach’s schism between documentation and code: 

• Documents such as “Mach 3 Kernel Principles” underlines a clean, beautiful architecture. 

• Code is — for lack of better euphemisms — hard to follow. 

• StoMach’s 20 years anniversary! 

• My personal branch of GNU Mach, presented in 2005 at the Hurd Meeting in Madrid. 

• Introduced a COM interface in the device server, allowed to use OSKit drivers. 



History and Motivation.
Strategies for NUX-based Mach.

• Two ways I could go on porting Mach to NUX: 

1. Implement a NUX arch in Mach 

• Mach was famous for its portability 

• Arch-dependent interface well separated. 

• The main difficult thing is creating a kernel thread abstraction on top of NUX. Doable but unnatural. 

2. Reimplement Mach on top of NUX. 

• Hardest, longest road. 

• Understand by reimplementing. Could finally answer many questions I have about this microkernel. 

• Does the code really have to be that complicated and difficult to read? 

• Mach was a pioneer on many modern OSes ideas. What choices wouldn’t be made today?



History and Motivation.
Strategies for NUX-based Mach.

• Two ways I could go on porting Mach to NUX: 

1. Implement a NUX arch in Mach 

• Mach was famous for its portability 

• Arch-dependent interface well separated. 

• The main difficult thing is creating a kernel thread abstraction on top of NUX. Doable but unnatural. 

2. Reimplement Mach on top of NUX. 

• Hardest, longest road. 

• Understand by reimplementing. Could finally answer many questions I have about this microkernel. 

• Does the code really have to be that complicated and difficult to read? 

• Mach was a pioneer on many modern OSes ideas. What choices wouldn’t be made today?

Of course I chose this!



Part II: A Brief Introduction to Mach



A brief introduction to Mach
IPC: Mach Kernel and User interaction.

• Mach is famously based on IPCs. 

• It is a client-based architecture, and client is called user. 

• Minimally, the only required system calls are those to send messages. 

• Most of the kernel services are also exported via syscalls, for 
performance reasons. 

• Three different modes supported: 

1. Userspace to Userspace 

• This is the default. Two threads can communicate queueing 
messages in the kernel. 

2. Kernel Server 

• Kernel can receive messages from userspace. 

3. Kernel User 

• Kernel can send messages to the userspace.

queue

User Server

Kernel

Userspace

Kernel 
User

Kernel 
Server

12

3



A brief introduction to Mach
IPC: Port, Port Rights, Port Sets.

• IPC messages are sent from an end point to another. 

• The end point is called a Port in Mach. 

• Ports are kernel object, and live refcounted in the kernel. 

• Ports do not have a global name space, but each task has a local name space. 

• For each entry in the name space we have (simplified): 

• Port Right (Send, Recv, Send Once) 

• Port to send the message 

• Send port right are effectively moved to the task receiving the message 

• Can be cloned though, so can send any number of messages 

• Send Once — hence the name — send only once, and the port right self-
destruct on sending. 

• For each port, there’s only one Receive right. 

• Whoever has the right, can receive the messages sent to the port. 

• Receive Rights can be collated into Port Sets, so that a single receive 
request can receive messages from multiple ports.

Task Task

Kernel

Userspace

port



A brief introduction to Mach
IPC: MIG and User/Server Interface.

• Mach provides a standard Interface 
Definition Language and a tool to 
generate user and server code: 
MIG, or Mach Interface Generator. 

• The user part translates C function 
calls into a kernel-defined message 
format. 

• The server part does the opposite, 
from messages to function calls.

Mach 
Interface 
Generator

Server 
Code

Interface 
Definition

User 
Code

Interface CallsInterface 
Implementation



A brief introduction to Mach
IPC: The Mach Message Format

• Mach Messages can be of two types: 

A. Simple Messages 

• Can be copied directly in the port queue. Data passed 
has no meaning for the kernel. 

B. Complex Messages 

• Need to be parsed by the kernel. 

• May contain address ranges that have to be copied to 
the receiving task. 

• May contain port rights transferred from a task to 
another. 

• The existence of complex messages implies that: 

•  MIG and the Kernel are tightly coupled. 

• Message passing cannot be a simple fast copy.

Message Header

Type | Value

Type | Mem Range

…

Type | Value

Type | Value



A brief introduction to Mach
VM: If you thought the IPC was complex.

• Mach allows to map parts of VM objects 
into a task’s address space. 

• Each object has an associated external 
pager that supplies pages requested. 

• This is a Kernel User IPC. 

• Pagers supply the pages requested to a 
memory cache. 

• This is a Kernel Server IPC. 

• There’s a special pager, called the default 
pager, that supplies zeroed pages initially.

Address Space

VM 
Region

VM 
Region

VM 
Object

VM 
Object

Pager

Pager

Physical 
Memory 
Cache



A brief introduction to Mach
VM: Copy on Write Structures

• Mach aggressively uses copy-on-
write when copying parts of a VM 
region between address spaces. 

• When VM object A is copied with 
copy on write, a new, empty VM 
object B is created. 

• VM Object A shadows VM Object B. 

• VM Object A or B can further be 
copied, creating a shadow chain 
between VM objects. 

Original 
VM 

Object

Pager

Copy 
VM 

Object

Default 
Pager

…

Shadow Chain



A brief introduction to Mach
VM: Copy on Write Dynamics I

• When a VM object needs to retrieve a page 
(e.g., page fault) 

1. The current pager is checked for the 
missing page 

2. If pager doesn’t have that page, the 
request moves to the shadow 

3. If the shadow VM object has the page 
resident, return the page. Otherwise 
search the pager. 

4. Whichever pager has the page, adds the 
page to the requesting VM object cache. 

VM 
Object

Pager

VM 
Object

Default 
Pager

…
Physical 
Memory 
Cache

page 
request



A brief introduction to Mach
VM: Copy on Write Dynamics II

• When a page in a VM object is 
modified: 

1. Before allowing modifications, 
the current page is pushed to 
the object we are shadowing. 

2. The VM object obtains a copy of 
the page.

VM 
Object

VM 
Object

…

page 
modification

push



A brief introduction to Mach
VM: Paging Out

• Kernel tries to maintain a certain 
number of pages free. 

• When memory is low, the VM 
pageout scans memory in cache 
and instructs VM Objects to page 
out least used pages. Physical 

Memory 
Cache

VM Pageout

VM 
Object

Pager



A brief introduction to Mach
VM: Complications, as if more were needed.

• The copy-on-write mechanism described is only one of three mechanisms supported. 

A. MEMORY_OBJECT_COPY_DELAY: The mechanism described 

B. MEMORY_OBJECT_COPY_CALL: Notify pager before copying. 

• From Mach 3 Kernel Principles, 1992: “(Important note: This feature is scheduled for 
replacement. It is un-tested and believed not to work.)” 

• It is still there… 

C. MEMORY_OBJECT_COPY_NONE: Always make physical copies of data. 

• When switching between COPY_DELAY to COPY_NONE, the kernel has to fetch all pages 
swapped out, and make physical copies. 

• Only seen in a 1994 commit in the ext2fs translator of the GNU Hurd.



A brief introduction to Mach
VM: External VM Interface

• Mach User interface does not think in term of VM objects, 
but in terms of Address Ranges. 

• This means that operations issued from the user to the 
VM subsystem might spawn multiple VM objects in a 
single operation. 

• This also includes address ranges passed in messages.



Part III: The MACHINA reimplementation.



The MACHINA reimplementation.
Reimplementation principles.

• I hope I convinced you how complicated this is. 

• Actively avoided looking at Mach source code. 

• Wanted to reproduce the interface, and see what the code would look like. 

• Divide and Conquer: implement the two complex system, IPC and VM, 
separately. 

• In Mach, they are actually tightly coupled, as messages sent to the kernel are 
themselves an address space range, so subject to the VM object logic. 

• In MACHINA, messages are sent through a special buffer, always mapped and 
shared between kernel and user.



The MACHINA reimplementation.
Modularity

• MACHINA includes the concept of modules: 

• The kernel core defines the kernel objects and their interactions. 

• A module defines the actual user interface: 

• Kernel IPC Interfaces 

• Extra System Calls 

• Modules currently being developed: 

• test: a testing module for development 

• mach3: based off CMU Mach defs files and headers, implements classic Mach.



The MACHINA reimplementation.
Software stack.

MACHINA 
kernel

Kernel 
Module

Kernel
User

libmachina

libmodule

Tools

MACHINA 
MIG

Bootstrap 
Task



The MACHINA reimplementation.
MACHINA IPC implementation.

Message Header

Port | Port Name

Int | 3

port

Message Header

Port | Port Pointer

Int | 3

port

refcnt

refcnt

External Message Format
Internal Message Format

• Two types of messages: 

1. “External Format” 

Reference to kernel objects are task-local. 

2. “Internal Format” 

References to kernel objects are reference 
counted pointers. 

• When receiving a message: 

• The message is translated from External to Internal, 
then queued. 

• When sending a message: 

• The message is translated from Internal to External, 
then copied to the thread’s message buffer.



The MACHINA reimplementation.
MACHINA VM implementation.

Address 
Space

VM 
Region

VM 
Region

VM 
Object

VM 
Object

Memory 
Cacheshadow

VM Objects

Cache 
Object

Pager 
Interface

page tables

Cache 
Objects

Pager 
Interface

Physical 
Pages 

Management
Memory 

Controller

clock 
algorithm 

[page reclamation]

swap out

page in



Part IV: Lessons learned.



Lessons learned.
Is it worth it?

• I knew Mach was complicated. Now I know much better why. 

• Does rewriting makes sense? Seems like it: 

• Code, at least when it comes to locking objects and following code path, much 
simpler — although incomplete. 

• Early benchmarks of MACHINA IPC (no optimizations attempted) seem to be at 
least on par with more mature Mach implementation. 

• Code being simpler, it is easier to modify. 

• Having the IPC kernel interface defined in modules allow to have a way to 
generate Mach-like systems, and further expose the flexibility of the Mach design



Lessons learned.
Is it a ‘modern’ design?

• Many choices wouldn’t be made today: 

• IPC would probably be done on a ring buffer, rather than on a queue of a 
controllable maximum message count. 

• In modern microkernel system, the userspace is usually trusted to 
remember which object it mapped at which address. 

Having the user interface for the VM operate at VM object, and not 
generic address range, would simplify the VM architecture by a lot. 

• Port Rights counters are really complicated. Although it is so linked to the 
nature of Mach that it’s difficult to say how it would be done differently.



MACHINA: Current Status
Incomplete but core functional.

• Core is fairly complete. Hardest parts implemented first. 

• Port and other kernel object handling is implemented. 

• IPC misses notifications. 

• VM is implemented. External pager interface currently unused. 

• Missing parts: 

• Many functionalities regarding task, thread, host, etc necessary to have a running system. 

• Mach3 module currently off-branch. 

• What does it do: 

• Not very much, except booting a test bootstrap that stresses IPCs and VMs.



Thank you!
For more information: 

https://tlbflush.org 
https://nux.tlbflush.org 

https://github.com/glguida/machina 

https://tlbflush.org
https://nux.tlbflush.org
https://github.com/glguida/machina

