cWESUSE

Latest Implementation
of AMD SEV-SNP in OVMF

richard-lyu
SUSE Labs Developer for EFI
FOSDEM 2025

Whoami

Richard Lyu

Taipei, Taiwan

Work at SUSE
SUSE Labs Developer for EFI
Maintain OVMF in SLES and openSUSE

cWe SUSE 2 B

e Background

o Confidential Computing
o AMD SEV-SNP
o OVMF

e Upstream Status
o AMD SEV-SNP in Open Source
o Commits

e Integration in Virtualization
o Integration
o SEV Driver

c®e SUSE

Background

Confidential Computing

c®We SUSE

Encryption

~

cWe SUSE . B

Providers

e Require a combination of hardware and software

(intel®> AMDZU AI'm

e Delivered with cloud providers or server manufacturers

£ aws

c®We SUSE 7

.||||

<3

NVIDIA.

Y Google Cloud

AMD SEV-SNP

c®We SUSE

Key Features

e Memory Encryption
e Nested Paging
e Integrity Protection

e Key Management and Attestation

c®We SUSE

SEV Architecture

llllllllllllllllllllllllllllllll

SOC

c®We SUSE

OVMF

c®We SUSE

What is OVMF?

e Open-source UEFI firmware for virtual machines.
e Part of Tianocore's EDK II project.

Key Features:

e UEFI-compliant boot environment.
e Works with QEMU/KVM.
e Simplifies UEFI app development.

. ry
* tianocore

mSUSE h I .

c®e SUSE

Upstream Status

AMD SEV-SNP in Open Source

Technology | Features EDK2 QEMU Linux
SEV Memory encryption >= edk2- >=212 >=4.15
stable201808

SEV-ES Memory encryption >= edk2- >=6.0 >=5.10
+ CPU state encryption stable202008

SEV-SNP Memory encryption >= edk2- >=9.10 >=6.11
+ CPU state encryption stable202405
+ Memory integrity protection

c®We SUSE

Commits

Commits

EDK2

QEMU

Linux Kernel

0 100 200 300 400

cWe SUSE 16 B

c®e SUSE

Integration in Virtualization

Integration

4)
OVMF
- J
I fw_cfg
4)
User Space L 2Ll)
I sev_ioctl
Kernel Space (b
KVM
- J
4 I)
SEV Driver
- I J
[SEV API
J

cWe SUSE

SEV Driver

struct kvm_sev_cmd {
_u32id;
__u32 pado;
___ub4 data;
__u32 error;
__u32sev_fd;

/* Secure Encrypted Virtualization command */ [**

enum sev_cmd_id { * SEV platform commands

/* Guest initialization commands */ */
KVM_SEV_INIT =0, enum {
KVM_SEV_ES_INIT, SEV_FACTORY_RESET =0,
[* Guest launch commands */ SEV_PLATFORM_STATUS,
KVM_SEV_LAUNCH_START, SEV_PEK_GEN,
KVM_SEV_LAUNCH_UPDATE_DATA, SEV_PEK_CSR,
KVM_SEV_LAUNCH_UPDATE_VMSA, SEV_PDH_GEN,

.. SEV_PDH_CERT_EXPORT,
KVM_SEV_NR_MAX, SEV_PEK_CERT_IMPORT,

j SEV_GET_ID, /* This command is
deprecated, use SEV_GET _ID2 */
SEV_GET_ID2,

SNP_PLATFORM_STATUS,

struct sev_issue_cmd {
} * | SNP_SET_CONFIG,
b4 data; [’ SNP_VLEK_LOAD
T /_) ___u32 error; /* Out */ - — ’
} __ packed;
SEV PLATFORM — SEV_MAX,
vm_fd loCTL . -
kvm_fd sev_fd
[dev/kvm /dev/sev

cWe SUSE

PI Architecture Firmware Phases

©

Reset Event Permanent DXE Shutdown
; Memory Foundation
emporary . .
Memory HOB-Memory DXE Boot Device OS Loader Runtime SIeep
DI teh Selection Restart
Root of Trust HOB-Firmware g pe el e
Handoff Handoff DXE
information information Drivers OS Loader
. Pre-EFI Driver Boot Transient . .
Security Initialization Execution Device System Load Runtime AURATIC
Selection
SEC PEI DXE BDS TSL RT AL
Power on Platform Initialization > OS Boot > Shutdown
20 N I

cWe SUSE

PI Architecture Firmware Phases

©

Verify Initialize Confidential
Hardware SEV-SNP Computing Shutdown
Support Support Blob
; : Boot Device OS Loader Runtime SIS
Verify Hypervisor Protocols for A
Hypervisor Features Memory Selection Restart
Support Acceptance
Memory
Validate Allocation SEV-SNP OS Loader
System RAM Hob Configuration
Table
. Pre-EFI Driver Boot Transient . .
Security Initialization Execution Device System Load Runtime AURATIC
Selection
SEC PEI DXE BDS TSL RT AL
Power on Platform Initialization > OS Boot > Shutdown
2 I I

cWe SUSE

Reference

[1] AMDG64 Architecture Programmer’s Manual Volume 2: System Programming

https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24593.pdf

[2] AMDG64 Architecture Programmer’s Manual Volume 3: General-Purpose and System Instructions

https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24594.pdf

[3]AMD-V™ Nested Paging

https://www.cse.iitd.ac.in/~sbansal/csl862-virt/2010/readings/NPT-WP-1%201-final-TM.pdf

[4] Accelerating Two-Dimensional Page Walks for Virtualized Systems

https://pages.cs.wisc.edu/~remzi/Classes/838/Spring2013/Papers/p26-bhargava.pdf

[5] Memory virtualization: shadow page & nest page

https://blog.csdn.net/hit_shaogi/article/details/121887459

[6] AMD-SEV API

https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/programmer-references/55766_SEV-KM_API
Specification.pdf

cWe SUSE 2 B

https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24593.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24594.pdf
https://www.cse.iitd.ac.in/~sbansal/csl862-virt/2010/readings/NPT-WP-1%201-final-TM.pdf
https://pages.cs.wisc.edu/~remzi/Classes/838/Spring2013/Papers/p26-bhargava.pdf
https://blog.csdn.net/hit_shaoqi/article/details/121887459
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/programmer-references/55766_SEV-KM_API_Specification.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/programmer-references/55766_SEV-KM_API_Specification.pdf

Reference

[71 AMD Memory Encryption

https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/memory-encryption-wh
ite-paper.pdf

[8] QEMU - AMD SEV

https://www.qemu.org/docs/master/system/i386/amd-memory-encryption.html

[9] Linux - KVM

https://www.kernel.org/doc/html/v5.7/virt/kvm/index.html

[10] AMD SEV-SNP White Paper
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthenin

g-vm-isolation-with-integrity-protection-and-more.pdf
[11] AMD SEV in ThinkSystem

https://llenovopress.lenovo.com/lp1545-using-amd-secure-encrypted-virtualization-encrypted-state-sev-es
[12] AMD SEV-SNP Key Attestation

https://www.amd.com/content/dam/amd/en/documents/developer/ilss-snp-attestation.pdf

[13] AMD Virtualization Memory Encryption Technology
https://www.linux-kvm.org/imaqges/7/74/02x08A-Thomas_Lendacky-AMDs_Virtualizatoin_Memory Encryption_Te
chnology.pdf

cWe SUSE 24 B

https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/memory-encryption-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/memory-encryption-white-paper.pdf
https://www.qemu.org/docs/master/system/i386/amd-memory-encryption.html
https://www.kernel.org/doc/html/v5.7/virt/kvm/index.html
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://lenovopress.lenovo.com/lp1545-using-amd-secure-encrypted-virtualization-encrypted-state-sev-es
https://www.amd.com/content/dam/amd/en/documents/developer/lss-snp-attestation.pdf
https://www.linux-kvm.org/images/7/74/02x08A-Thomas_Lendacky-AMDs_Virtualizatoin_Memory_Encryption_Technology.pdf
https://www.linux-kvm.org/images/7/74/02x08A-Thomas_Lendacky-AMDs_Virtualizatoin_Memory_Encryption_Technology.pdf

c®e SUSE

AMD SEV-SNP

Integrity Threats

["] THREAT

DESIRED SECURITY PROPERTY

SEV-SNP ENFORCEMENT
MECHANISM

REPLAY PROTECTION
DATA CORRUPTION
MEMORY ALIASING

MEMORY RE-MAPPING

cWe SUSE

Only the owner of a memory page can write
that page

Only the owner of a memory page can write
that page

Every physical memory page can map only to a
single guest page at one time

Every guest page can map only to a single
physical memory page at one time

26

Reverse Map Table (RMP)
Reverse Map Table (RMP)
Reverse Map Table (RMP)

Page Validation

Reverse Map Table (RMP)

[”] Native tablewalk RMP

=% |f not hypervisor
Virtual Address =——————p Physical Address = Rege = WY
Nested tablewalk RMP

=+ Check gPA
gvVA = gPA = Physical Address —I

gCR3 nCR3
If gPAJ/ASID in RMP doesn't match => #NPF

FIGURE 3: RMP CHECKS

@SUSE 2 B e

Page Validation

Hypervisor Page

2. Hardware sets)

RMP([X].Validated. * R/W by Hypervisor

* Not useable by guest with
C=1

1. Guest does
PVALIDATE.

4. Hypervisor
changes mapping
in NPT.

5. Hardware sees
RMP[Y].Validated=0 ~ RMP

=>#VC exception. «
3. Hypervisor allocates Y at

Guest Physical System Physical same GPA. RMI?UPDATE
Address Space Address Space sets RMP[Y].Validated=0.

FIGURE 5: PAGE RE-MAPPING ATTACK

Guest-Valid Guest-Invalid

* RO (encrypted) by Hypervisor

* RO (encrypted) by Hypervisor
* R/W by guest with C=1

* Not useable by guest with
c=1

FIGURE 4: BASIC PAGE STATES

cWe SUSE 28 B

SEV-SNP Page States

(]

Metadata

~———» RMPUPDATE
—— PVALIDATE
—% AMD-SP API Call

Guest-Valid

Guest-Invalid

Pre-Swap

FIGURE 6: PAGE STATE TRANSITIONS

c®We SUSE

1]

STATE DESCRIPTION NOTES

HYPERVISOR Default state for otherwise unassigned memory Used for hypervisor memory, non-SNP-VM
memory, and shared (C=0) memory

GUEST- Page is assigned to a guest but not ready to be Not useable by SEV-SNP VMs until

INVALID used validation has occurred

GUEST-VALID Page is assigned to a guest and useable Page may be used as private (C=1)
memory by the assigned SEV-SNP VM

PRE-GUEST Page is Immutable and not validated Used when initially launching SEV-SNP
VMs

PRE-SWAP Page is Immutable and validated Used when swapping guest pages to disk

FIRMWARE Page is Immutable and reserved for AMD-SP use Typically used as transitory state until
AMD-SP has configured the page

METADATA Page is Immutable and used for metadata Metadata is used when swapping guest
pages to disk

CONTEXT Page is Immutable and used for context Context pages are used by the AMD-SP to

information identify individual VMs and hold per-VM
29

Virtual Machine Privilege Levels (VMPL)

e VMPLO being the highest privilege level and VMPL3 the least privileged.

Hypervisor
(Treated as Untrusted)

VM VM

Security Enforcement Security Enforcement
(VMPLO) (VMPLO)

Rich OS Rich OS Rich OS Rich OS
vCPU vCPU vCPU vCPU
(VMPL3) (VMPL3) (VMPL3) (VMPL3)

FIGURE 7: VMPLs

c®We SUSE 30

Interrupt/Exception Protection

Two optional modes:

Hypervisor

e Restricted Injection
e Alternate Injection

Queue VINTR

VMPL3 vCPU VMPL3 vCPU

FIGURE 9: VMPL INTERRUPT HANDLING

cWe SUSE a B

VM Launch & Attestation

Attestation Report

AMD-SP
v

Request Attestation / \\ P
Report with / I
HASH(PubKey) \\ /

V4

VM

Remote
Party

= >
e e e - -

Verify Attestation

Report
Provide Protected P

Information

FIGURE 10: SEV-SNP ATTESTATION

cWe SUSE 2 B

Key Attestation

AMD
Security
Processor

© Measurements sent
to guest owner

/

\

Guest
Attestation Report———— . pened —G

Measurements Measurements 0 Measurements

AMD
Firmware
and ucode

SEV-SNP
Guest

Owner Measurements
Attestation
| Policy
collected
4—Secrets and Trust © Guest owner decides
© Guestownertrusts hust guest arnot

Launches guest 0 ﬁ

c®We SUSE

guest with secrets

Hypervisor

3 B

AMD Secure Processor

Key Management
MMIO Registers (Platform Management API, Guest Management API)
Hypervisor -> SEV Driver -> MMIO Registers

mSUSE 34 B e

c®e SUSE

AMD-SEV

VM Launch & Attestation

Attestation Report

AMD-SP
v

Request Attestation / \\ P
Report with / I
HASH(PubKey) \\ /

V4

VM

Remote
Party

= >
e e e - -

Verify Attestation

Report
Provide Protected P

Information

FIGURE 10: SEV-SNP ATTESTATION

cWe SUSE 3s B

Architecture

37

communications

SEV
Architecture
Note: Hypervisor serves as untrusted communicotion

channel for guest owner <—> AMD Secure Processor

Guest Owner |«

c®We SUSE

Key Management [6]

Table 1. Summary of Keys

Key Abbr. Algorithm Usage

Platform Diffie-Hellman Key PDH | ECDH curve P-384 | Key agreement PSP

Platform Endorsement Key PEK | ECDSA curve P-384 | Signing the PDH PSP

Chip Endorsement Key CEK | ECDSA curve P-384 | Signing the PEK chip oTp fuses

AMD SEV Signing Key ASK | RSA 2048 Signing the CEK AMD SEV CPU

AMD Root Key ARK | RSA 2048 Signing the ASK; AMD root of
trust AMD Product

Owner Certificate Authority OCA | ECDSA curve P-384 | Signing the PEK; platform
owner root of trust

Transport Integrity Key TIK HMAC SHA-256 Trusted channel Integrity

Transport Encryption Key TEK | AES 128 Trusted channel confidentiality

Key Encryption Key KEK | AES 128 Key wrapping

Key Integrity Key KIK HMAC SHA-256 Key wrapping

VM Encryption Key VEK | AES 128 Guest memory encryption

c®We SUSE

38

Platform Authenticity
(AMD, Cloud Provider)

Confidential
Communication
(Guest Owner <->PSP)

Sevctl

PDH EP384 D256 f8f7389e5743fc00f9e88b219a7h9e80680148b2dd026€99237ca804b88bb763
PEK EP384 E256 8afl3aa247a4714433b3f5b223dbb5c2b3b7d6f24882a94159343dc50fa597832
OCA EP384 E256 d934d8fe6fd300d3d188822d781ea744b0f861a806f8580773e2e0893ad86c33
CEK EP384 E256 1e€999ed0c950b95dflcc738b52c8a2b54aa9c2f6ec7117df1303e98b975¢c2f19
ASK R4096 R384 9fa6db577758411b576cfcdc3c2f0851e60f0c69ffdch6301ad2f7864191e829162925888464d9d285612ehb03b3fc63d
ARK R4096 R384 b66el6ffOebeed57f0c4dffal54872c4156F2e5b1c2f4e66e58fc37f1d2a60d31a342echb6430a9b2510a970c75¢c37926

self signed, *~ = signs, ¢ = invalid self sign, % = invalid signs

Certificate chain for device identity
e ARK -> ASK -> CEK -> PEK -> report (AMD)

Certificate chain for platform owner identity:
e OCA -> PEK -> report (Platform Owner)

cWESUSE 2 B

Launch a Guest

AMD Secure

Launching a Guest P
rocessor

Guest Owner Cloud Provider Hypervisor

Launching a Guest

AMD Secure
Processor

AMD Secure
Processor

Guest Owner Cloud Provider Hypervisor

AAgreement on boct image and computation of hash

Guest Owner Cloud Provider Hypervisor

Agreement on boct image and computation of hash

encrypting guest
image

Provisioning

authenticates

ots SEV platfor Customer (or
S e e m ﬁebw»‘;
i . Sends measurement
platform and verifies

to guest owner
measurement

Query for PDH

Query for PDH
certificate chain

PDH_CERT_EXPORT

PRI Cuicry / store POH

PDH_CERT_EXPORT
cerfificate chain |_CERT

certificate chain

Enarypts disk Inject guest with
encryption key and secret (disk
sendsto guest encryption key)

Generate and
provide session info.
for LAUNCH_START

Retrieves guest from.
B ibraryand loads it
Into memory

[

Retrieves guest from
fibrary and lcads it
into memory

Provides the
customer DH key LAUNCH_START
and session info

ACTIVATE

Asks hypervisor to

pr—
s boot guest

boot gu

Finalize launch
process

Provides the
customer DH key

s SEV-enable bit
inVM®B

Allocates an ASID.
and activates guest

Allocates an ASID
and activates guest

Continues to ask Continues to ask

firmware to encrypt

firmware to encrypt
guest memory

guest memory

Guest is running

' Updote commands ore called

as needed,

Updote comm

as mary U

| as many

Guest Startup
Guest Startup

Guest Startup

cWe SUSE % B

Launch a Guest

PSP sends PDH and PEK to hypervisor, which sends chain to guest owner

Guest owner validates PDH with chain of PEK, CEK, ASK and ARK, as well as OCA

Guest owner generates ephermeral ECDH key (GDH)

Guest owner derives shared Key Encryption Key (KEK) from private key of GDH and public key

of PDH

e Guest owner generate ephemeral Transport Integrity Key (TIK) and Transport Encryption Key
(TEK), encrypts both with KEK

e Guest owner sends public key of GDH, encrypted TIK/TEK, and launch policy to hypervisor

e Hypervisor calls PSP 1aunce sTarT with these parameters (but can't decrypt the TIK/TEK)

e PSP derives KEK from its private key of PDH and the public key of GDH, uses KEK to decrypt
TIK

e Hypervisor allocates ASID and calls PSP act1vaTE to enable guest

e PSP generates memory encryption key (VEK) for this ASID (if the ASID is already in use, the
PSP returns ~s1p owneD and won't activate the guest)

e Guest owner sends clear text kernel and initrd to hypervisor

cWe SUSE / B

Launch a Guest

Hypervisor calls PSP raunce uppaTe paTa to add the kernel and initrd to the guest

PSP hashes clear text of data and encrypts physical pages with VEK (*** IS THERE ATOCTOU? **¥)

Hypervisor calls PSP raunca urpaTE vMsa to configure virtualization structures

PSP hashes clear text VMSA structures and encrypts them with VEK

Hypervisor calls PSP 1runcH MEASURE

PSP generates liveliness nonce and computes HMAC of the nonce data, vmsa and policy using the TIK

that only it and the guest owner know

Hypervisor sends this measurement HMAC to the guest owner (it can't fake it since it doesn't know TIK)

Guest owner validates HMAC, trusts that VM has been setup correctly

e (Hypervisor can't add new pages at this point since the 1aunca MEASURE moves the guest into LsECRET
mode and disables the Launce paTa command)

e Guest owner sends up to 16 KB encrypted with TEK and HMAC'ed with TIK to the hypervisor. This can
contain secrets like disk encryption keys so that the cloud provider can't see them (although the cloud
provider was able to see the entire kernel and initrd, so they should not contain secrets).

e Hypervisor calls PSP r.runcu secreT to add this data to the guest

e PSP validates HMAC with TIK, decrypts with TEK and re-encrypts with VEK into the guest's memory

e Hypervisor calls PSP raunch rinTsH, which causes the PSP to forget all of the guest keys except for
VEK

e Hypervisor invokes virun to start the encrypted guest enclave

cWe SUSE 2 B

VM boot process with kernel

Guest Owner ‘ QEMU ‘

‘ Guest VM | AMD-SP

Read kernel file to fw_cfg

A

Load OVMF to guest memory

(22 >
Measure guest memory
o >
Measurement
D e ar e T e S ROTS TP T o
Measurement
4 .. °
Approved, launch!
o >

Launch VM (start OVMF)

Read kernel from fw_cfg

vmlinuz content

Jump to kernel ’
| o

A, 4

c®We SUSE

43

SEV Key Management

Communicates with x86 software
— Mailbox registers
— Shared memory buffer

Hypervisor

SUSE s

X86 Processor AMD Security
Processor

MMIO Registers

SEV Firmware

Memory
Controller

SMD-SEV Support [1]

Long Mode

e Supported Operating Modes
e Long mode

e lLegacy PAE mode

CSl=1 SMHE
Compatibility

Mode RSM

EFERLME=1, CR4.PAE=1

then CRO.PG=1 then EFER.LME=0

RSM SMI#

EFLAGS.VM=0

EFLAGS.VM=1

Protected
Mode

SMIg RSM

7 CROPE=]
Reset

System
Management
Mode

RSM

‘.. FRedt _..-

Figure 1-6. Operating Modes of the AMD64 Architecture

c®We SUSE 45

c®e SUSE

AMD-SEV ES

VMM Communication Exception (#VC)

Guest IAMD64 Hardwarel Hypervisor

|
Guest triggers
VMEXIT condition

Send #VC exception

|

|

|

|

|

to the guest |

|

|

|

|

#VC handler copies |
state to GHCB as. |
needed |

|

|

|

|

|

Save guest state to |

|

protected memory
and load HV state

Hypervisor handles’
exit

Load guest state
from protected
memory

Returns to #VC
handler
Handler modifies
state as needed

Figure 15-31. EXAMPLE #VC FLOW

cWe SUSE o B

VMCB

[12]

c®We SUSE

VNCB

Control Area
(Unencrypted)

Save Area (Encrypted)

Intercept Bits

Segment Regiseters

Interrupt Delivery

Control Registers

ASID

System Registers

Paging information

General Purpose

Registers

Floating Point
Registers

48

Figure 3. Virtual Machine Control Block (VMCB) &

VMCB

c®We SUSE

c®e SUSE

Implementation

AMD SEV ST
) | fw_cfg ’ [9]QEMU AMD-SEV
User Space L GEvl)
—————————e +-sev_ioctr——-
Kernel Space [b
KVM
I
SEV Driver
I [6]AMD-SEV API

SEV Firmware Guest
Management API

cWe SUSE B

AMD SEV

struct kvm_sev_cmd {
_u32id;
__u32 pado;
___ub4 data;
__u32 error;
__u32sev_fd;

/* Secure Encrypted Virtualization command */ [**

* SEV platform commands
/* Guest initialization commands */ */

enum {

enum sev_cmd_id {

KVM_SEV_INIT =0,

KVM_SEV_ES _INIT,

/* Guest launch commands */
KVM_SEV_LAUNCH_START,
KVM_SEV_LAUNCH_UPDATE_DATA,
KVM_SEV_LAUNCH_UPDATE_VMSA,

" KVM_SEV_NR_MAX,

2 /

struct sev_issue_cmd {
SEV IOCTL __u32 cmd; [In*/
___ub4 data; [In*/
T __u32 error; /* Out ¥/
SEV } __ packed;
vm_fd PLATFORM)
T IQCT |3
kvm_fd sev_fd
[dev/kvm [dev/sev
character device driver
I

cWe SUSE

SEV_FACTORY_RESET =0,
SEV_PLATFORM_STATUS,
SEV_PEK_GEN,

SEV_PEK_CSR,

SEV_PDH_GEN,
SEV_PDH_CERT_EXPORT,
SEV_PEK_CERT_IMPORT,
SEV_GET _ID, /* This command is

deprecated, use SEV_GET _ID2 */

SEV_GET_ID2,
SNP_PLATFORM_STATUS,
SNP_COMMIT,
SNP_SET_CONFIG,
SNP_VLEK_LOAD,

SEV_MAX,

VM Launch & Attestation

Pre Verifier

verify

Y

Processor
> Init

C

Device, Bus,
or Service
Driver

RERE
UEFI Driver
Dispatcher

Intrinsic Services

UEFI
Interface

7

Boot
Manager

OS-Absent

Transient OS
Environment

Q

Transient OS Boot

Loader
)

Final OS Boot
Loader

OS-Present
App
()
Final OS
Environment

L,

Security Pre EFI Driver Execution Boot Dev Transient Run Time After Life
[(@)| (SEC) |nitialization (PEI) | Environment (DXE) Select System Load (RT) (AL)
(&) (TSL)
Power on — [.. Platform initialization . .] [....0Sboot....] Shutdown
53 I

cWe SUSE

ovmf ResetVector

[edk2/OvmfPkg/ResetVector/Main.asm

- Main routine of the pre-SEC code up through the jump into SEC

BITS 16
Main16:
OneTimeCall EarlyInit16

OneTimeCall TransitionFromReal16To32BitFlat
BITS 32
mov byte[WORK_AREA_GUEST TYPE], 0

Tom Lendacky <) 2 years ago (May 17th, 2022 4:24 AM)

) OvmfPkg: Make an 1a32/X64 hybrid build work with SEV
Main32:

OneTimeCaII InitTdx The BaseMemEncryptSevLib functionality was updated to rely {
OneTimeCall Flat32SearchForBfvBase

OneTimeCall Flat32SearchForSecEntryPoint

the use of
the OVMF/SEV workarea to check for SEV guests. However, thi
areais only

%ifdef ARCH_IA32

) dated wh ing the X64 OVMF build, not the hybrid
OneTimeCall CheckSevFeatures i G i bl
1a32/X64 build.

Base SEV support is allowed under the 1a32/X64 build, but it ng
fails
to boot as a result of the change.

jmp rsi

%else
OneTimeCall Transition32FlatTo64Flat

BITS 64

cWESUSE . BN

jmp rsi

ovmf ResetVector

[edk2/OvmfPkg/ResetVector/la32/AmdSev.asm

- Provide the functions to check whether SEV and SEV-ES is enabled.

; Check if SEV-ES is enabled
MSR_0xC0010131 - Bit 1 (SEV-ES enabled)
mov ecx, SEV_STATUS_MSR

; Check if SEV memory encryption is enabled
MSR_0xC0010131 - Bit O (SEV enabled)
mov ecx, SEV_STATUS_MSR

rdmsr
bt eax, O
jnc NoSev

rdmsr
bt eax, 1
jnc GetSevEncBit

[edk2/OvmfPkg/Sec/AmdSev.c

- File defines the Sec routines for the AMD SEV

if (Msr.Bits.SevSnpBit) {

return TRUE;

ovmf - SEC

[edk2/OvmfPkg/Library/QemuFwCfgLib/QemuFwCfgSec.c

- BOOLEAN EFIAPI QemuFwCfglsAvailable (VOID)
- QemuFwCfgSelectlitem (QemuFwCfgltemSignature); -
Signature = QemuFwCfgRead32 ();
- QemuFwCfgSelectlitem (QemuFwCfglteminterfaceVersion) -
Revision = QemuFwCfgRead32 ();

- BOOLEAN InternalQemuFwCfglsAvailable (VOID)

- BOOLEAN sInternalQemuFwCfgDmalsAvailable (VOID)
- BOOLEAN InternalQemuFwCfgDmalsAvailable (VOID)
- VOID InternalQemuFwCfgDmaBytes

cWe SUSE 6 BN

Oovmf - PEI
EDK2/OvmfPkg/Library/QemuFwCfglib/QemuFwCfgPei.c

- STATIC BOOLEAN QemuFwCfglsCcGuest (VOID)
- BOOLEAN EFIAPI QemuFwCfglsAvailable
- InternalQemuFwCfglsAvailable ()
- STATIC VOID QemuFwCfgProbe
- UINT32 Signature;
- UINT32 Revision;
- STATIC EFI_HOB_PLATFORM_INFO
*QemuFwCfgGetPlatforminfo
- EFI_HOB_PLATFORM_INFO *PlatforminfoHob;
- EFI_HOB_GUID_TYPE = *GuidHob;
- RETURN_STATUS EFIAPI QemuFwCfglnitialize
- BOOLEAN InternalQemuFwCfglisAvailable
- BOOLEAN InternalQemuFwCfgDmalsAvailable
- VOID InternalQemuFwCfgDmaBytes

cWe SUSE 7 B

Oovmf - DXE

EDK2/OvmfPkg/Library/QemuFwCfglLib/QemuFwCfgDxe.c

- UINTN EFIAPI QemuGetFwCfgSelectorAddress
- UINTN EFIAPI QemuGetFwCfgDataAddress

- UINTN EFIAPI QemuGetFwCfgDmaAddress

- RETURN_STATUS EFIAPI QemuFwCfglinitialize

EFI_STATUS Status:

FDT_CLIENT_PROTOCOL *FdtClient;

- CONST UINT64 *Reg;

- UINT32 RegSize;
UINTN AddressCells, SizeCel
UINT64 FwCfgSelectorAddress;
UINT64 FwCfgSelectorSize;

- UINT64 FwCfgDataAddress;
UINT64 FwCfgDataSize;
UINT64 FwCfgDmaAddress;
UINT64 FwCfgDmaSize;
QEMU_FW_CFG_RESOURCE *FwCfgResource;

cWe SUSE =8 —

QEMU SEV, SEV-ES, SEV-SNP Enabled

/gemu/target/i386/sev.c

sev_enabled(void)

{

ConfidentialGuestSupport *cgs = MACHINE(qdev_get_machine())->cgs;

return !l!lobject_dynamic_cast(OBJECT(cgs), TYPE_SEV_COMMON);

sev_es_enabled(void)

{

ConfidentialGuestSupport *cgs = MACHINE(qdev_get_machine())->cgs;

return sev_snp_enabled() ||
(sev_enabled && SEV_GUEST(cgs)->policy & SEV_POLICY_ES);

sev_snp_enabled(void)

{

ConfidentialGuestSupport *cgs = MACHINE(qdev_get_machine())->cgs;

return !!object_dynamic_cast(OBJECT(cgs), TYPE_SEV_SNP_GUEST);

QEMU SEV |/O COntrOI /Iinux-headers/asm-x86/kvm.h

kvm_sev_cmd {
U372 ad:
__u32 pado;
[gemu/target/i386/sev.c __u64 data;
__u32 error;

foso i sev_fd;
sev_ioctl(int fd, int cmd, void *data, int *error) -

{
't r:
t kvm_sev_cmd input;

/qgemu/accel/kvm/kvm-all.c

t kvm_vm_ioctl(KVMState *s, int type, ...

memset(&input, 0xO0,

input.id = cmd;
input.sev_fd = fd; Tf;gA
input.data = (uintptr_t)data; va_list ap;

= kvm_vm_ioctl(kvm_state, KVM_MEMORY_ENCRYPT_OP, &input); va_stantiap type).
arg = va_arg(ap, id %)

va_end(ap);

'

if (error) {
*error = input.error; trace_kvm_vm_ioctl(type, arg);

accel_ioctl_begin();
ret = ioctl(s->vmfd, type, arg);
accel_ioctl_end();

return r; if (ret == -1) {

ret = -errno;

}.
return ret;

QEMU SEV Platform 1/O Control

/gemu/linux-headers/linux/psp-sev.h

/gemu/target/i386/sev.c

sev_platform_ioctl(int fd, int cmd,
{ sev_issue_cmd {
__u32 cmd;
__ub4d data;
__u32 error;

arg.cmd = cmd;
arg.data = (unsigned long)data: } _ attribute_ ((packed));
r = ioctl(fd, SEV_ISSUE_CMD, &arg);
if (error) {

*error = arg.error;

r;
ct sev_issue_cmd arg;

/usr/include/sys/ioctl.h

}

#ifndef USE_TIME_BITS¢
return r: E - ioctl (i _ fd, unsigned i __request, ...) __ THROW;
#else
ifdef REDIREC
Xt e _ REDIRECT_NTH (ioctl, (int __ fd, unsigned Ic¢ t __request, ...),
__ioctl _time64);

else

r __doctl_timeb64d (__aiel, 1signed g __request, ...) __THROW;
define i e6
endif
#endif

SEV-SNP Implementation in OVMF

c®We SUSE

KVM

- 3d4aeaad8bb8 KVM: SVM: Report Nested Paging support to userspace

- Bbd2edc341dl KVM: SVM: Implement MMU helper functions for Nested Nested Paging

- 709ddebf8Icb KVM: SVM: add support for Nested Paging

- 6c¢7dac72d5c¢7 KVM: SVM: add module parameter to disable Nested Paging

- e3da3acdb32c KVM: SVM: add detection of Nested Paging feature

- ¢63cf135cc99 KVM: SEV: Add support to handle RMP nested page faults

- e3cdaabbff02 KVM: x86: SVM: fix nested PAUSE filtering when LO intercepts PAUSE

- 28f091bc2f8c KVM: MMU: shadow nested paging does not have PKU

- 6fec21449062 KVM: x86: use correct page table format to check nested page table reserved bits
- 54987b7afa90 KVM: x86: propagate exception from permission checks on the nested page fault
- e23588blefbc KVM: SVM: comment nested paging and virtualization module parameters

- 3d4aeaad8bb8 KVM: SVM: Report Nested Paging support to userspace

- Bbd2edc341dl KVM: SVM: Implement MMU helper functions for Nested Nested Paging

#define SEV_DEV_PATH " "
* The opened file descriptor of

cWESUSE 2 B

KVM

d8aa7eea78al x86/mm: Add Secure Encrypted Virtualization (SEV) support

Author: Tom Lendacky <thomas.lendacky@amd.com>
Date: Fri Oct 20 09:30:44 2017 -0500

x86/mm: Add Secure Encrypted Virtualization (SEV) support
Provide support for Secure Encrypted Virtualization (SEV). This dinitial

support defines a flag that is used by the kernel to determine if it 1is
running with SEV active.

64 I

KVM

916391a2d1dc KVM: SVM: Add support for SEV-ES capability in KVM

163 2. 25bfb686243 2

Tom Lendacky <thomas.lendacky@amd.com>
Thu Dec 10 11:09:38 2020 -0600

KVM: SVM: Add support for SEV-ES capability in KVM

Add support to KVM for determining if a system is capable of supporting
SEV-ES as well as determining if a guest is an SEV-ES guest.

Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <e66792323982c822350e40c7alcf67ea2978a70b.1607620209.git.tho
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>

cWe SUSE 6s B

KVM

cbd3d4f7c4eb x86/sev: Check SEV-SNP features support

C \,(,}f _‘V(: ,‘ edaeb8e514?)69368 'i;gi:' 77d6

Brijesh Singh <brijesh.singh@amd.com>
Wed Feb 9 12:10:06 2022 -0600
x86/sev: Check SEV-SNP features support

Version 2 of the GHCB specification added the advertisement of features

that are supported by the hypervisor. If the hypervisor supports SEV-SNP
then it must set the SEV-SNP features bit to indicate that the base
functionality is supported.

Check that feature bit while establishing the GHCB; if failed, terminate
the guest.

cWESUSE o0 B

KVM

200664d5237f crypto: ccp: Add Secure Encrypted Virtualization (SEV) command support

- Support for SEV API Spec [link]

Brijesh Singh <brijesh.singh@amd.com>
Mon Dec 4 10:57:28 2017 -0600

crypto: ccp: Add Secure Encrypted Virtualization (SEV) command support

AMD's new Secure Encrypted Virtualization (SEV) feature allows the
memory contents of virtual machines to be transparently encrypted with a
key unique to the VM. The programming and management of the encryption
keys are handled by the AMD Secure Processor (AMD-SP) which exposes the
commands for these tasks. The complete spec is available at:

http://support.amd.com/TechDocs/55766_SEV-KM%20API_Specification.pdf
Extend the AMD-SP driver to provide the following support:

- an in-kernel API to communicate with the SEV firmware. The API can be
used by the hypervisor to create encryption context for a SEV guest.

- a userspace IOCTL to manage the platform certificates.

cWe SUSE 7 B

https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/programmer-references/55766_SEV-KM_API_Specification.pdf

KVM

Implementation SEV API

9f5b5b950aa9 : SVM: Add support for LAUNCH_SECRET command
7d1594f5d94b : SVM: Add support for DEBUG_ENCRYPT command
24f41fb23a39 : SVM: Add support for DEBUG_DECRYPT command
255d9e75e254 : SVM: Add support for GUEST_STATUS command
5bdb0e2fa45e : SVM: Add support for LAUNCH_FINISH command
0dO736f76347 : SVM: Add support for KVM_ _LAUNCH_MEASURE command

89c505809052 : SVM: Add support for KVM_ _LAUNCH_UPDATE_DATA command
59414c989220 : SVM: Add support for KVM_ _LAUNCH_START command
70cd94e60c73 : SVM: VMRUN should use associated ASID when is enabled
1654efchc431 : SVM: Add KVM_SEV_if\illj command

dc48baeOleba : Define key management command -1d

ed3cd233f807 : SVM: Reserve ASID range for guest

5dd0a57cf38e : X86: Add CONFIG_KVM_AMD_

cWESUSE o0 B

KVM Nested Paging

c®We SUSE

KVM 6.11 Support sev-snp

ob978c62972d Merge branch kvm 6.11-sev-snp’ into HEAD

Merge f9dlb54ld057 b2€CO42347fd
Author: Paolo Bonzini <pbonzini@redhat.com>
Date: Mon Jun 3 13:19:46 2024 -0400

Merge branch 'kvm-6.1l-sev-snp' into HEAD

Pull base x86 KVM support for running SEV-SNP guests from Michael Roth:
add some basic infrastructure and introduces a new KVM_X86_SNP_VM
vm_type to handle differences versus the existing KVM_X86_SEV_VM and
KVM_X86_SEV_ES_VM types.
implement the KVM API to handle the creation of a cryptographic
launch context, encrypt/measure the initial image into guest memory,

and finalize it before launching it.

implement handling for various guest-generated events such as page
state changes, onlining of additional vCPUs, etc.

implement the gmem/mmu hooks needed to prepare gmem-allocated pages
before mapping them into guest private memory ranges as well as
cleaning them up prior to returning them to the host for use as
normal memory. Because those cleanup hooks supplant certain
activities like issuing WBINVDs during KVM MMU invalidations, avoid
duplicating that work to avoid unecessary overhead.

This merge leaves out support support for attestation guest requests
and for loading the signing keys to be used for attestation requests.

cWe SUSE

Linux Kernel SEV, SEV-ES, SEV-SNP Enabled

[linux/arch/x86/kvm/svm/sev.c

static bool sev_enabled = true;
module_param_named(sev, sev_enabled, bool, 0444);

static bool sev_es_ enabled Crue;

module_param_named(sev_es, sev_es_enabled, bool, 0444);

static bool sev_snp_enabled = true;
module_param_named(sev_snp, sev_snp_enabled, bool, 0444);

cWe SUSE n —

Reference

[1]AMD64 Architecture Programmer’s Manual Volume 2: System Programming
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/program
mer-references/24593.pdf

[2] AMD64 Architecture Programmer’s Manual Volume 3: General-Purpose and System
Instructions
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/program
mer-references/24594.pdf

[3] AMD-V™ Nested Paging
https://www.cse.iitd.ac.in/~sbansal/csI862-virt/2010/readings/NPT-WP-1%201-final-TM.pdf
[4]Accelerot|ng Two-Dimensional Page Walks for Virtualized Systems
https://pages.cs.wisc.edu/~remzi/Classes/838/Spring2013/Papers/p26-bhargava.pdf
[5]Memory virtualization: shadow page & nest page

https://blog.csdn.net/hit shaogqi/article/detaqils/121887459

[6]AMD-SEV API
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/program
mer-references/55766 SEV-KM APl Specification.pdf

cWe SUSE 7 B

https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24593.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24593.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24594.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24594.pdf
https://www.cse.iitd.ac.in/~sbansal/csl862-virt/2010/readings/NPT-WP-1%201-final-TM.pdf
https://pages.cs.wisc.edu/~remzi/Classes/838/Spring2013/Papers/p26-bhargava.pdf
https://blog.csdn.net/hit_shaoqi/article/details/121887459
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/programmer-references/55766_SEV-KM_API_Specification.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/programmer-references/55766_SEV-KM_API_Specification.pdf

Reference

[7]AMD Memory Encryption
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-pap
ers/memory-encryption-white-paper.pdf

[8]AMD SEVE A EIE

https://blog.csdn.net/huang987246510/article/details /135487665

[9]QEMU - AMD SEV
https://www.qemu.org/docs/master/system/i386/amd-memory-encryption.html
[10]Linux - KVM

https://www.kernel.org/doc/html/v5.7/virt/kvm/index.html

[11] AMD SEV-SNP White Paper
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-pap
ers/SEV-SNP-strengthening-vm-isolation-with- integrity-protection-and-more.pdf

[12] AMD SEV in ThinkSystem
https://lenovopress.lenovo.com/Ipl545-using-amd-secure-encrypted-virtualization-encryp
ted-state-sev-es

[13] AMD SEV-SNP Key Attestation
https://www.amd.com/content/dam/amd/en/documents/developer/Iss-snp-attestation.p
df

cWe SUSE 7 B

https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/memory-encryption-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/memory-encryption-white-paper.pdf
https://blog.csdn.net/huang987246510/article/details/135487665
https://www.qemu.org/docs/master/system/i386/amd-memory-encryption.html
https://www.kernel.org/doc/html/v5.7/virt/kvm/index.html
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://lenovopress.lenovo.com/lp1545-using-amd-secure-encrypted-virtualization-encrypted-state-sev-es
https://lenovopress.lenovo.com/lp1545-using-amd-secure-encrypted-virtualization-encrypted-state-sev-es
https://www.amd.com/content/dam/amd/en/documents/developer/lss-snp-attestation.pdf
https://www.amd.com/content/dam/amd/en/documents/developer/lss-snp-attestation.pdf

[14]AMD Virtualization Memory Encryption Technology
https://www.linux-kvm.org/images/7/74/02x08A-Thomas Lendacky-AMDs Virtualizatoin M

emory Encryption Technology.pdf

cWe SUSE 74 B

https://www.linux-kvm.org/images/7/74/02x08A-Thomas_Lendacky-AMDs_Virtualizatoin_Memory_Encryption_Technology.pdf
https://www.linux-kvm.org/images/7/74/02x08A-Thomas_Lendacky-AMDs_Virtualizatoin_Memory_Encryption_Technology.pdf

c®e SUSE

AMD SEV-SNP

Integrity Threats

["] THREAT

DESIRED SECURITY PROPERTY

SEV-SNP ENFORCEMENT
MECHANISM

REPLAY PROTECTION
DATA CORRUPTION
MEMORY ALIASING

MEMORY RE-MAPPING

cWe SUSE

Only the owner of a memory page can write
that page

Only the owner of a memory page can write
that page

Every physical memory page can map only to a
single guest page at one time

Every guest page can map only to a single
physical memory page at one time

77

Reverse Map Table (RMP)
Reverse Map Table (RMP)
Reverse Map Table (RMP)

Page Validation

Reverse Map Table (RMP)

[”] Native tablewalk RMP

=% |f not hypervisor
Virtual Address =——————p Physical Address = Rege = WY
Nested tablewalk RMP

=+ Check gPA
gvVA = gPA = Physical Address —I

gCR3 nCR3
If gPAJ/ASID in RMP doesn't match => #NPF

FIGURE 3: RMP CHECKS

@SUSE e B e

Page Validation

Hypervisor Page

2. Hardware sets)

RMP([X].Validated. * R/W by Hypervisor

* Not useable by guest with
C=1

1. Guest does
PVALIDATE.

4. Hypervisor
changes mapping
in NPT.

5. Hardware sees
RMP[Y].Validated=0 ~ RMP

=>#VC exception. «
3. Hypervisor allocates Y at

Guest Physical System Physical same GPA. RMI?UPDATE
Address Space Address Space sets RMP[Y].Validated=0.

FIGURE 5: PAGE RE-MAPPING ATTACK

Guest-Valid Guest-Invalid

* RO (encrypted) by Hypervisor

* RO (encrypted) by Hypervisor
* R/W by guest with C=1

* Not useable by guest with
c=1

FIGURE 4: BASIC PAGE STATES

cWe SUSE 7s B

SEV-SNP Page States

(]

Metadata

~———» RMPUPDATE
—— PVALIDATE
—% AMD-SP API Call

Guest-Valid

Guest-Invalid

Pre-Swap

FIGURE 6: PAGE STATE TRANSITIONS

c®We SUSE

1]

STATE DESCRIPTION NOTES

HYPERVISOR Default state for otherwise unassigned memory Used for hypervisor memory, non-SNP-VM
memory, and shared (C=0) memory

GUEST- Page is assigned to a guest but not ready to be Not useable by SEV-SNP VMs until

INVALID used validation has occurred

GUEST-VALID Page is assigned to a guest and useable Page may be used as private (C=1)
memory by the assigned SEV-SNP VM

PRE-GUEST Page is Immutable and not validated Used when initially launching SEV-SNP
VMs

PRE-SWAP Page is Immutable and validated Used when swapping guest pages to disk

FIRMWARE Page is Immutable and reserved for AMD-SP use Typically used as transitory state until
AMD-SP has configured the page

METADATA Page is Immutable and used for metadata Metadata is used when swapping guest
pages to disk

CONTEXT Page is Immutable and used for context Context pages are used by the AMD-SP to

information identify individual VMs and hold per-VM
80

Virtual Machine Privilege Levels (VMPL)

e VMPLO being the highest privilege level and VMPL3 the least privileged.

Hypervisor
(Treated as Untrusted)

VM VM

Security Enforcement Security Enforcement
(VMPLO) (VMPLO)

Rich OS Rich OS Rich OS Rich OS
vCPU vCPU vCPU vCPU
(VMPL3) (VMPL3) (VMPL3) (VMPL3)

FIGURE 7: VMPLs

c®We SUSE g

Interrupt/Exception Protection

Two optional modes:

Hypervisor

e Restricted Injection
e Alternate Injection

Queue VINTR

VMPL3 vCPU VMPL3 vCPU

FIGURE 9: VMPL INTERRUPT HANDLING

cWe SUSE 52 B

VM Launch & Attestation

Attestation Report

AMD-SP
v

Request Attestation / \\ P
Report with / I
HASH(PubKey) \\ /

V4

VM

Remote
Party

= >
e e e - -

Verify Attestation

Report
Provide Protected P

Information

FIGURE 10: SEV-SNP ATTESTATION

cWe SUSE 83 B

Key Attestation

AMD
Security
Processor

© Measurements sent
to guest owner

/

\

Guest
Attestation Report———— . pened —G

Measurements Measurements 0 Measurements

AMD
Firmware
and ucode

SEV-SNP
Guest

Owner Measurements
Attestation
| Policy
collected
4—Secrets and Trust © Guest owner decides
© Guestownertrusts hust guest arnot

Launches guest 0 ﬁ

c®We SUSE

guest with secrets

Hypervisor

84 B e

AMD Secure Processor

Key Management
MMIO Registers (Platform Management API, Guest Management API)
Hypervisor -> SEV Driver -> MMIO Registers

mSUSE & B e

c®e SUSE

Appendix

c®e SUSE

SEV API

Launching a Guest

Usqge FIOWS Platform Provisioning

Cloud Provider

AMD Secure
Processor

AMD Secure
Processor

Guest Owner Cloud Provider Hypervisor

Allinteractions between Agreement on boot image and computation of hash

SEV Platform re provider and AMD Secure
allocated Processor are facilitoted by

hypervisor

Boots SEV platf
Resets platform to cots SEV platform

E FACTORY_RESET
factory state =

SEV Platform from
factory

Query for PDH o
certificate chain »| POH_CERT_EXPORT

i

Boots platform and

INIT I Retrieves guest from
initializes SEV i Hibrary and lcads it
for LAUNCH_START Lo into memory
Retrieves PEK
certificate signing PEK_CSR
request

Provides the
customer DH key LAUNCH_START
and session info
Allocates an ASID ACTIVATE
and activates guest

Continues to ask
firmware to encrypt
guest memory

Generates PEK
certificate and signs
with CA signing key

LAUNCH_UPDATE_DATA
LAUNCH_UPDATE_VMSA

Imports PEK
certificate into PEK_CERT_IMPORT
platform

'
'
'

v

Guest Startup

c®We SUSE e

Usage Flows

Launching a Guest (continued)
Live Migration

AMD Secure

Guest Owner Cloud Provider Hypervisor
Processor

Source AMD Secure Source Hypervisor / Destination Destination AMD Secure
Processor Cloud Provider Hypervisor Processor

Completes
encrypting guest
image

Retrieves PDH and
certificate chain POH_CERT EXPORT
from destination
Customer (or fimware
delegate)
sl P— E
authenticates o
platform and verifies RE: ST chain.
measurement

)_START authenti
the POH and certi

Sends POH and
SEN

START
chain to source
firmware

Encrypts disk Inject guest with
encryption key and secret (disk LAUNCH_SECRET
s encryption key) Sends PDH Sends PDH
d

certificate and ctificat
session Info to session info to
firmware fimware

Finalize launch
process LAUNCH_FINISH Allocates an ASID
and activates guest

Update commands are caled
as needed,

Retrieves encrypted Loads encrypted RECIVELURCATE.DATE

SENDLROAT est pages and uest pages into
SEND_UPDATE_VMSA e Pags by RECEIVE_UPDATE_VMSA
e n destination guest

Sets SEV-enable
in VMG

RECEIVE_FINISH

SEND_FINISH 2
of completion

is running

Guest Startup

c®We SUSE o

c®e SUSE

Nested Paging

O)

VM
(guest)

|

VMCB

1 N

cWe SUSE

J

O)

VM
(guest)

VMRUN VMEXIT/ /\/MRUN

/hOSt

NS

(hypervisor/VMM)

gemu }

~

User space

Kernel space

> guest mode

> host mode

Page Walk

9 a 9 9 12
VN1 | veN2 [ven3 | veNs | VPO | virtual address
L1 PT L2 PT L3 PT L4 PT
Page global Page upper Page middle Page
4o directory 40 directory a0 directory a0 fable
CR3 + # 4 B
Physical
address
of L1 PT 9 9 9 9 Offset i
L1 PTE L2 PTE L3 PTE L4 PTE ¢ into
= i = 4 12 physical and
virtual page
512GB 1GB 2MB 4KB Physical
region region region region address
per entry per entry per entry per entry of page
v
40 12
[PPN | PPO | Physical address

c®We SUSE

92

Traditional Paging

0

I Linear Space I VA

CR3 N

PT PA

Figure 15-12. Address Translation with Traditional Paging

cWe SUSE o B

Nested Page Walk

1D 2D

VA
gVA

gCR3 | Nested page table <

VA[47:3 . _
Mg Pllﬁ.l) s oL, |vAw3s) 4GPA @ SPASPA SPA @ SPA g;‘ GPa

| /o)
v A[38: L vape:j| 3 ® @ nL, @ oy [|g
168 |(PDP) ots & 8 0 7 g
vape:21)| 2 /nly\ /nL nL. nL oL, | =
vape:2) L, ote & 12 19 1 O 1 §
[2we™ | (PD) e s e s =
it, varo:12)| 4 i @ @ n‘:, @ 9;6' .
vao12) L, d T
we | (PT) d o e o s
oA VAL - nly nL,
TLB g A2 24 /TLB -
VA[11:0] Entry Entry
——— PA nCR3 nle nLs nLy nl, G

Figure 2: Linear/Virtual to physical address translation algorithm Figure 5: Address translation with nested paging. GPA is guest physical
address; SPA is system physical address,; nL is nested level; gL is

guest level

c®We SUSE o

Page Table Virtualization

(a) Hardware page table virtualization

e Intel - Extended Page Tables (EPT)
e AMD - Nested Page Tables (NPT)

(b) software page table virtualization

¢ VMM - Shadow Page(gVA—hPA)
e Managed by VMM (Hypervisor)

cWe SUSE o B

Nested Page vs. Shadow Page

Compare

Nested Page

Shadow Page

Page Table Updates

Fast: Direct (hardware-managed)

Slow: VMM (software-managed)

Performance Overhead | Less Higher
Page Table Walk 24 4

(gVA -> hPA)

Hardware Support Native Walk + Nested Page Native Page

c®We SUSE

96

Nested Paging

Guest Linear

gVvVA

Host Linear hVA

CR3 (used by VMM)

Figure 15-13. Address Translation with Nested Paging

cWe SUSE o B

c®e SUSE

AMD-SME

CR3 register lifecycle

c®We SUSE

° AMD-V
o AMD-V {E#t T host mode #1 guest mode , 7 BIFAREETT host #1 guest , FETE guest ;51T T 4 455 B+ VMEXIT E| host ,
host #{T4ALEE, host ALHE5EfF VMRUN # A Z| guest 44455517,
° KVM
o KVM{ER AMD-V , H#% 7T ioctl #tF FEF (QEMU) £/ .
o ioctl (...) i&& guest(VM) BIATE, BITIEIRGIBE S
o ioct(KVM_RUN), QEMU A ioct(KVM_RUN), {#FM host mode VMRUN i# A Z| guest mode , FF#RiE1T guest , 7E guest 5o
7T #5848t VMEXIT Zl host, B ioctl (VM_RUN) E#GEEE] QEMU , QEMU #4T40E, REBRSE, HA octl
(KVM_RUN) i# A guest mode , 4455517 guest , fEIFX 4T 7E,
o VMRUNNMEXIT B, 8% host/guest Sk AR VMCB &, &4 vCPU SR —4 VMCB(—4 guest AI&EERA £ vCPU) .

o fERA—#HEKER—T VM(guest)

o fFERA-1TZ%EARKR—1 VvCPU,

o {EF KVM {28 i octl HEE /iE1T VM,
o ZHIKEE (B3ETEAHKB)

° GUEST
o guest ATLLZ A HIEAIEHA kernel(£E FUE ?), th AT LUZ $ 33 E HUMEISS T HI kernel(para- virtulization ?)
° VMCB

o VMCB fREFET #x host/guest K% #R7F, 7 #1T host/guest mode YAt FAE,

@SUSE 100 I .

AMD-SME

o Key
o Same encryption key: All memory encrypted with SME uses the same AES encryption key.
o Random key generation: The AES encryption key is randomly generated each time the system boots.

® Software cannot read or modify the key: The encryption key cannot be read or modified by software.
° Determining Support
o CPUID Fn8000_001F[EAX]. Bit 0 indicates support for Secure Memory Encryption.
° Enabling Memory Encryption Extensions
o enabled by setting SYSCFG MSR bit 23 (MemEncryptionModEn) to 1
o software must ensure it is executing from addresses where these upper physical address bits are 0 prior to setting
SYSCFG[MemEncryptionModEn]
° Supported Operating Modes
o Long Mode
o Legacy PAE-Protected Mode
° I/0O Accesses
o Physical Address Reduction:
o C-bit
o MMIO Pages

cWe SUSE 2 B

Long Mode

SME#
RSM

EFERLME=1, CR4.PAE=1

then CRO.PC=1 then EFER.LME=0

RSM SMI#

EFLAGS.VM=0

EFLAGS.VM=1

Reset

Protected
Mode

SMI# RSM P
. CROPE=1
Reset !
o :
System
Management M
Mode RSM
Reset

Figure 1-6. Operating Modes of the AMD64 Architecture

c®We SUSE

102

Encrypted Memory Access

Memory Read
PTE C-bit
Data l
DRAM
L CPU
AES Decrypt
Memory Write

PTE C-bit

Y. pata @
H=

Figure 1: Memory Encryption Behavior

c®We SUSE

Unencrypted Encrypted

Figure 2: Address Mapping

c®We SUSE

Encrypted DRAM

Figure 3: Encrypted VMs

cWe SUSE 105 [

Program
code/data

SEV security
layer

Existing CPU

security
‘ layer

Figure 5: Security Layers

c®We SUSE

f Traditional AMD SEV
Model Model

Figure 6: SEV Security Model

c®We SUSE

SEV Use Cases

Cloud Sandboxing

AMD SEV Sandboxing

Operating System]

Figure 8: Sandboxing

Figure 7: Encrypted VMs in the
Cloud

cWe SUSE 108 B

SEV Architecture

Figure 9: SEV Architecture

c®We SUSE

SEV Software Implications

e Hypervisor
e Guest

c®We SUSE

SEV

[gemu/target/i386/sev.c

cWe SUSE m B

. SevGuestState [{

SevCommonState parent_obj;
gchar *measurement;

handle;
2_t policy;
*dh_cert_file;
(*session_file;
OnOffAuto legacy vm_type;

c®We SUSE

n3

C-bit (Crypted bit)

e Functional

o Encryption Control
e Usage

o Software uses the C-bit to control memory encryption.
e Location

o CPUID Fn8000_001F[EBX] [5:0]

Memory Read
PTE C-Bit

CPUID Fn8000_001F_EBX Secure Encryption

Data
| , Bits |Field Name Description

31:16| — Reserved
Memory Write 15:12|NumVMPL Number of VM Permission Levels supported.
PrE B 11:6 |PhysAddrReduction Physical Address bit reduction.

Data 5:0 |CbitPosition C-bit location in page table entry.
=

Figure 7-19. Encrypted Memory Accesses

cWe SUSE na B

CR3 Register

e Hardware Register
o Point to the base address of the currently active page table

e InVM, CR3 (gCR3)
o point to guest page table

e In host, CR3(nCR3)
o points to the nested page table or the host's page table

cWe SUSE s B

CPUID Fn800000IF[EAX]

CPUID Fn8000_001F_EAX Secure Encryption

cwe

SUSE

16

Bits [Field Name Description
Bits |Field Name Description 13 |Alternatelnjection Alternate Injection supported.
31 |IbpbOnEntry IBPB on Entry supported. 12 |RestrictedInjection Restricted Injection supported.
30 |HvinUseWrAllowed Writes to Hypervisor-Owned pages are allowed when marked in-use. 11 |64BitHost SEV guest execution only allowed from a 64-bit host.
20 |NestedVirtSnpMsr zgggTRx)gghp)l?sﬁ:Eo'\r::dR (C001_F001h) and VIRT_PSMASH MSR 10 |HwEnfCacheCoh Hardware cache coherency across encryption domains enforced.
= — - . 9 |TscAuxVirtualization TSC AUX Virtualization supported.
28 |SvsmCommPageMSR |SVSM Communication Page MSR (C001_FO000h) is supported. 8 |SecureTec Securs TSC supported.
27 AIIowedS(j:vFeatures Allowed SEV Features supported. 7 |vmpisss VMPL Supervisor Shadow Stack supported.
zg zfn‘i:::‘:;on 2::: :::;ﬁ:: ZT“Z‘:M 6 |RMPQUERY RMPQUERY Instruction supported
24 |VmsaRegProt VMSA Register Pr:thtion supported. B |VMEL M. Ponnission | evels shppolted.
4 |SEV-SNP SEV Secure Nested Paging supported.
23:22(— Reserved
21 |RMPREAD RMPREAD Instruction supported. 2 i::;ish " i::eitlp:;g::::ns:;?ﬁed
20 [PmcVirtGuestCtl PMC Virtualization supported for SEV-ES and SEV-SNP guests. ——
19 |IbsVirtGuestCtl IBS Virtualization supported for SEV-ES and SEV-SNP guests. 1 |SEN Seeure Encrypted Visudlization supported.
18 |VirtualTomMsr Virtual TOM MSR supported. ol bt bt i i -
17 |VmgexitParameter VMGEXIT Parameter supported.
16 |VTE Virtual Transparent Encryption supported.
15 |PreventHostlbs Disallowing IBS use by the host supported.
14 |DebugVirt Full debug state virtualization supported for SEV-ES and SEV-SNP guests.

CPUID Fn8000001f[EBX]

CPUID Fn8000_001F_EBX Secure Encryption

Bits |Field Name Description
31:16| — Reserved
15:12|NumVMPL Number of VM Permission Levels supported.
11:6 |PhysAddrReduction Physical Address bit reduction.
5:0 |CbitPosition C-bit location in page table entry.

cWe SUSE " B

CPUID Fn8000001f[EBX]

CPUID Fn8000_001F_EBX Secure Encryption

Bits |Field Name Description
31:16 — Reserved
15:12|NumVMPL Number of VM Permission Levels supported.
11:6 |PhysAddrReduction Physical Address bit reduction.
5:0 |CbitPosition C-bit location in page table entry.

c®We SUSE

e L B

CPUID Fn800000I1f[ECX]

CPUID Fn8000_001F_ECX Secure Encryption

Bits |Field Name Description

31:0 INumEncryptedGuests |Number of encrypted guests supported simultaneously.

cWe SUSE o B

CPUID Fn800000I1f[EDX]

CPUID Fn8000_001F_EDX Minimum ASID

Bits

Field Name

Description

31:0

MinSevNoEsAsid

Minimum ASID value for an SEV enabled, SEV-ES disabled guest.

c®We SUSE

120 B

Q EMU SEV Enabled /gemultests/qtest/arm-cpu-features.c

"-machine virt,gic-version=max -accel tcg
[gqemu/target/i386/sev.c /gemul/qom/container.c /qemu/qom/object.c

Object *container_get(Object *root,
{

Object *object_resolve_path_component(Object *pare

sev_enabled(void) {

{ Object *obj, *child;
EE*Eparts:

1;

ObjectProperty *prop = object_property_find(p:
f (prop == L)L
return NU

ConfidentialGuestSupport *cgs = MACHINE(qdev_get_machine())->cgs;

S
}

~ ~ : . - . parts = g_strsplit(path, "/", 0);
return !!object_dynamic_cast(OBJECT(cgs), TYPE_SEV_COMMON); assert(parts != NULL & parts[0] != NULL && !parts[0][0]); if (prop->resolve) {
obj = root; return prop->resolve(parent, prop->opaque,

} else {
return

for (i = 1; parts[i] != NULL; i++, obj = child) {
child = object_resolve_path_component(obj, parts[i]);
if (!child
child = object_new("container");
object_property_add_child(obj, parts[i], child);
object_unref(child);

/qgemu/hw/core/qdev.c
Object *qdev_get_machine(void)
{

o
4

Object *object_new(const
{

F ey

tic Object *dev;

} TypeImpl *ti = type_get_by_nar

g_strfreev(parts);

if (dev == NULL) {
dev = container_get(object_get_root(), "/machine");

return object_new_with_type(t:

return obj;

/qemu/qom/object.c ObjectProperty *

object_property_add_child(Object *obj, cor
Object *child)

return dev; Object *object_get_root(void)

{

{

return object_property_try_add_child(obj, nal

tatic Object *root; }

/qemu/qom/object.c

if (lroot) {
root = object_new("container");

Object *object_dynamic_cast(Object *obj,
{

*typename)

if (obj && object_class_dynamic_cast(object_get_class(obj), typename)) {
return obj;

return root;

by

return NUL

Xen vs KVM vs QEMU

.

Dom 0

back end

Native
software

Linux Kernel

Host OS Kernel

c®We SUSE

.. r— TR———
HARDWARE HARDWARE HARDWARE
Xen KVM QEMU
122

c®We SUSE

Table 15-36. Fields of an RMP Entry

Name

Notes

Assigned

Flag indicating that the system physical page is assigned to a guest or to the
AMD-SP.

0: Owned by the hypervisor
1: Owned by a guest or the AMD-SP

Page Size

Encoding of the page size.
0: 4KB page
1: 2MB page

Immutable

Flag indicating that software can alter the entry via x86 RMP manipulation
instructions.

0: RMP entry can be altered by software
1: RMP entry cannot be altered by software

Guest_Physical _Address

Guest physical address associated with the page

ASID

ASID of guest to which page is assigned

Flag indicating that the page is a VMSA page.

Permissions[n-1]

VMSA 0: Non-VMSA page

1: VMSA page

Flag indicating that the guest has validated the page.
Validated See Section 15.36.6 for detz?ils.

0: The guest has not yet validated the page

1: The guest validated the page with PVALIDATE
Permissions[0]

VMPL permission masks for the page. See section 15.36.7.
for details.

123 B e

RMP Initialization

e Initialization:
o Correctly set RMP_BASE and RMP_END, align them properly, and zero out the memory in
the range before enabling SEV-SNP.

e RMP Size and Coverage
o Understand the RMP structure, calculate its size, and how it maps to physical memory.

e Role of AMD-SP
o The AMD-SP is crucial in finalizing RMP initialization and ensuring secure management
of the RMP memory.

cWe SUSE 124 B

RMP Initialization

° MSRs for RMP Initialization
o MSR C001_0132 (RMP_BASE): Defines the starting physical address of the RMP.
o MSR C001_0133 (RMP_END): Defines the ending physical address of the RMP.

o Consistency: Both RMP_BASE and RMP_END must be set identically across all cores in the system before globally enabling SEV-SNP.
. Alignment Requirements
o

Alignment: RMP_BASE and (RMP_END + 1) must be aligned to 8KB boundaries. Additional alignment requirements may be specified by the AMD Secure Processor (AMD-SP), so it's
important to check the latest AMD-SP specifications for any further alignment details.
° RMP Structure and Size
o Memory Layout: The memory region between RMP_BASE and RMP_END is organized as follows:
] 16KB for Processor Bookkeeping: This space is reserved for internal processor data.
] RMP Entries: Following the bookkeeping area, the RMP entries are each 16 bytes in size.

Coverage Calculation: The size of the RMP determines the range of physical memory that the hypervisor can assign to SNP-active VMs. The RMP covers the physical address space from 0x0
to an address calculated by the formula:

((RMP_END + 1 — RMP_BASE — 16KB) / 16B) x 4KB

Example: If RMP_BASE is set to 0x100000, to cover the first 4GB of physical memory, RMP_END should be set to 0x1103FFF, resulting in an RMP size just over 16MB.

. Initialization

a. ProcessPre-Initialization: Before enabling SEV-SNP globally, the memory range from RMP_BASE to RMP_END should be zeroed out to ensure it starts in a known state.

SecureNestedPagingEn Bit: Set this bit in the SYSCFG MSR to enable SEV-SNP.
AMD-SP Role: The hypervisor requests the AMD-SP to finalize the initialization of the RMP. The AMD-SP initializes the RMP and prevents direct software modifications to this memory range.

Subsequent Modifications: All further changes to RMP entries must be done using x86 RMP manipulation instructions or through interactions with the AMD-SP, ensuring controlled and secure
management of the RMP.

b.
c.
d

cWe SUSE s B

