
Yet another new SDR runtime?

Dr. Daniel Estévez

1 February 2025
FOSDEM, Brussels

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 1 / 26

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 2 / 26

Asking the big questions

Which is the one true best SDR runtime?

What makes an SDR runtime be fast?
Look at GNU Radio 3.10, GNU Radio 4.0, and FutureSDR

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 3 / 26

Asking the big questions

Which is the one true best SDR runtime?
What makes an SDR runtime be fast?
Look at GNU Radio 3.10, GNU Radio 4.0, and FutureSDR

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 3 / 26

All the SDR runtimes look the same!

Connections in the flowgraph are a circular buffer shared between the connected
blocks (single-producer multi-consumer)
Different input and output buffers. Bad for cache.
High (and difficult to control) latency on TX flowgraphs

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 4 / 26

All the SDR runtimes look the same!

Connections in the flowgraph are a circular buffer shared between the connected
blocks (single-producer multi-consumer)

Different input and output buffers. Bad for cache.
High (and difficult to control) latency on TX flowgraphs

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 4 / 26

All the SDR runtimes look the same!

Connections in the flowgraph are a circular buffer shared between the connected
blocks (single-producer multi-consumer)
Different input and output buffers. Bad for cache.
High (and difficult to control) latency on TX flowgraphs

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 4 / 26

An alternative: closed circuits of “packets”

Samples are sent in “packets” rather than as a continuous stream
The flowgraph is divided into closed circuits, in which a fixed number of “packets”
always exist
“Packets” are recycled by sending them from a sink back to a source

Many blocks can work in-place on a “packet”
Latency is determined by the number of “packets” in a circuit
“Packets” can mark natural sections in the data (aligned to RF frame sections, etc.).
Potentially less need for tags.
More similar to a hand-crafted implementation where functions are called in
sequence on the same buffer

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 5 / 26

An alternative: closed circuits of “packets”

Samples are sent in “packets” rather than as a continuous stream
The flowgraph is divided into closed circuits, in which a fixed number of “packets”
always exist
“Packets” are recycled by sending them from a sink back to a source

Many blocks can work in-place on a “packet”
Latency is determined by the number of “packets” in a circuit
“Packets” can mark natural sections in the data (aligned to RF frame sections, etc.).
Potentially less need for tags.
More similar to a hand-crafted implementation where functions are called in
sequence on the same buffer

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 5 / 26

The idea of a quantum

Let’s call this “packet” a quantum, because it is cool and because packet and frame
are heavily overloaded
A quantum contains:

A buffer with flexible margins. The margins allow inserting/adding a prefix/suffix in-place.
Example use cases: CRC, synchronization word, cyclic prefix.
Tags, referred to sample indices within the packet
Perhaps other metadata that the user might need?

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 6 / 26

A more complex example flowgraph

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 7 / 26

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 8 / 26

qsdr

https://github.com/daniestevez/qsdr

An implementation of these ideas in Rust using async

Some benchmarks comparing with GNU Radio 3.10, GNU Radio 4.0 and FutureSDR
Still an experimental work-in-progress

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 9 / 26

https://github.com/daniestevez/qsdr

Schedulers in qsdr

GNU Radio 4.0 and FutureSDR support custom schedulers, but they are quite
specific and not easy to write
qsdr schedulers are based on Rust streams, so any code that can run streams can
be a qsdr scheduler

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 10 / 26

A stream is an object that can produce a sequence of values asynchronously

A qsdr block has a work function which is async (it awaits to get its inputs),
processes one quantum per input/output, and returns Run, Done or an error
A qsdr block is converted to a stream. Each next() call on this stream calls the
work function once, and returns either an error or nothing.
A qsdr scheduler is just some code that performs calls to multiple streams on one or
several threads until all of them are done or there is an error

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 11 / 26

A stream is an object that can produce a sequence of values asynchronously

A qsdr block has a work function which is async (it awaits to get its inputs),
processes one quantum per input/output, and returns Run, Done or an error
A qsdr block is converted to a stream. Each next() call on this stream calls the
work function once, and returns either an error or nothing.

A qsdr scheduler is just some code that performs calls to multiple streams on one or
several threads until all of them are done or there is an error

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 11 / 26

A stream is an object that can produce a sequence of values asynchronously

A qsdr block has a work function which is async (it awaits to get its inputs),
processes one quantum per input/output, and returns Run, Done or an error
A qsdr block is converted to a stream. Each next() call on this stream calls the
work function once, and returns either an error or nothing.
A qsdr scheduler is just some code that performs calls to multiple streams on one or
several threads until all of them are done or there is an error

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 11 / 26

Stream combinators are useful to build schedulers. For instance, sequence2()
takes 2 streams (which produce items of type Result<(), E>) and produces a
stream (with the same item type) that calls each of the 2 streams in sequence
The helper function run() takes a stream and produces a future (an async result)
that calls the stream until it is done or there is an error. This is usually the top-level
element of the scheduler on each thread

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 12 / 26

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 13 / 26

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 14 / 26

Benchmarking methodology

Choose a family of simple flowgraphs
Write by hand an implementation that performs as best as possible
Write implementations in qsdr, GNU Radio 3.10, GNU Radio 4.0 and FutureSDR
Measure the rate (samples/second) at which each implementation can run

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 15 / 26

Benchmarking platform

Quad-core Cortex-A53 in AMD (Xilinx) MPSoC (1.33 GHz clock)
Found in many AMD FPGA SoC platforms, in which a high-performance SDR
runtime could be an alternative to an FPGA implementation for many signal
processing problems

Using a Kria KV260 board for development ($249 MSRP)
Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 16 / 26

Benchmarking flowgraph

Saxpy kernel: y [n] = ax [n] + b (note: usual saxpy has a vector in place of b)

Null Source does not do anything. Not even memset() the output to zero.
Benchmark Sink counts samples and measures the sample rate

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 17 / 26

Saxpy kernel implementation

Hand-written assembly using NEON SIMD
Throughput of 1 float / clock cycle (2 FLOPs / clock cycle), which is the maximum
according to the Cortex-A53 hardware limitations:

2 NEON units each capable of operating on a 64-bit vector
64-bit load path, 128-bit store path
Load/store to SIMD register uses corresponding NEON unit
One AGU for load/store

For comparison, an optimal memcpy() is 1.33 floats / clock cycle (5.33 bytes / clock
cycle)
2x as fast as the typical NEON code generated by gcc, clang and rustc, which is a
0.5 floats / clock cycle naïve implementation
Heavily uses tricks related to the partial dual-issue capability of the Cortex-A53

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 18 / 26

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 19 / 26

Saxpy kernel benchmark depending on buffer size

32 KiB L1 cache (per core), 1 MiB L2 cache (shared by all cores)

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 20 / 26

Saxpy kernel benchmark depending on buffer size

32 KiB L1 cache (per core), 1 MiB L2 cache (shared by all cores)

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 20 / 26

Some comments about SDR runtime performance

We want most of the CPU time to be spent on running our work() functions, rather
than something else
SDR runtime overhead depends on number of work() calls per second
Using large buffers for each work() call is not an option. Ideally we want to stay in
L1 cache (and definitely not go to DDR).
Fast simple kernels which can process an L1 cache worth of data quickly are the
worst case, since SDR runtime overhead can be significant
Some numbers for Saxpy kernel: 16 KiB buffer → 4096 floats. ∼1 float/cycle at 1.33
GHz → 3 µs per work() call.

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 21 / 26

Saxpy kernel benchmark in multiple CPU cores

Rust channels used to send buffers between threads. Custom high-performance
channels implemented in qsdr.
One thread pinned to each CPU core
Fixed number of buffers passed around in a circuit formed by the threads

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 22 / 26

Saxpy kernel benchmark of multiple kernels

M kernels and N CPU cores. Kernels statically pinned to CPU cores. Worst case,
ceil(M/N) kernels sharing a core.

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 23 / 26

SDR runtime benchmark with a single Saxpy kernel and single core

Flowgraph: null source → saxpy → benchmark sink
Uses simplest scheduler to run all the blocks in the same CPU

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 24 / 26

SDR runtime benchmark of multiple Saxpy kernels

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 25 / 26

Conclusions

There is a lot of room for improvement in SDR runtime performance
What is the future of qsdr?

Hard to say at this point. Might develop further or remain as an experiment
Currently more intended as a source of ideas and to compare with other SDR runtimes
If it develops further, the goal would be a lower-level runtime than GNU Radio. A middle
ground between having many things done/chosen for you versus having to write
everything from scratch.

Dr. Daniel Estévez Yet another new SDR runtime? FOSDEM 2025 26 / 26

