
The Performance Impact
of Auto-Instrumentation

James Belchamber

Who am I

● 20 years in the field
○ Computer Repair
○ IT Support
○ Linux SysAdmin
○ “DevOps Engineer”
○ Platform Engineer

● Started a two-person IT consultancy
○ Dev 🤝 Ops
○ Quickly found a niche in the observability space

● Working on an observability transformation since 2023

Who am I

Who am I

What on earth are you doing, James?

● Building an “Observability Platform”
○ ADOT Collectors > LGTP stack
○ Vended Dashboards
○ Legacy data sources
○ Everything as-code 😎

● Dramatically increasing Monitoring & Observability
○ Node/Windows Exporter on all instances
○ RED/USE-based Automatic Dashboards
○ Auto-Instrumenting ALL THE THINGS

Auto-what?

● Auto-Instrumentation!
● Free Traces from your existing code!
● Just attach it to your applications in:

○ Java/JavaScript
○ Python
○ PHP
○ .NET
○ Go?!?

● And they start leaking tasty telemetry.

But WAIT!
You can’t just start
automatically adding

code to all our
services!

Well.. code does cost cycles, James.

Part 1: Basic Testing

Java
Auto
Instrument
ation

Hello World Java

public class DemoApplication {

 public static void main(String[] args) {

 SpringApplication.run(DemoApplication.class, args);

 }

 @GetMapping("/hello")

 public String hello() {

 return String.format("Hello");

 }

}

Hello World Java - Sleep 1s

import http from 'k6/http';

import { sleep } from 'k6';

export const options = {

 vus: 10,

 duration: '10m',

};

export default function() {

 http.get('http://<super-secret-ip-address>:8080/hello');

 sleep(1);

}

Hello World Java - Sleep 1s - RED

Hello World Java - Sleep 1s - USE

Hello World Java - No Sleep - RED

Hello World Java - No Sleep - USE

Go
Auto
Instrument
ation

Hello World Go

func main() {

 router := gin.Default()

 router.GET("/hello", helloWorld)

 router.Run()

}

func helloWorld(c *gin.Context) {

 c.IndentedJSON(http.StatusOK, "Hello world!")

}

Hello World Go - Sleep 1s - RED

Hello World Go - Sleep 1s - USE

Hello World Go - No Sleep - RED

Hello World Go - No Sleep - USE

Auto-Instrumentation does
use resources

Lesson 1

Manual Instrumentation also
uses resources

Lesson 2

Manual Instrumentation
performance depends on the

implementation
Lesson 3

Hello World Java - No Sleep - RED - 2nd

Hello World Go - No Sleep - USE - 2nd

Auto-Instrumentation
performance is far more

consistent
Lesson 4

Testing other applications
says nothing about YOUR

application
Lesson 5

Part 2: Real Applications

PetClinic

PetClinic - 20VUs - RED

PetClinic - 20VUs - USE

PetClinic - 1VU - RED

PetClinic - 1VU - USE

An application that is
doing something significant
is probably not impacted by

auto-instrumentation
Lesson 6

httpd

httpd - 50VUs - RED

httpd - 50VUs - USE

Word
Pres
s

WordPress - 20VUs - RED

What
are you doing
WordPress

WordPress - 20VUs - USE

Performance Testing is
incredibly important!

Lesson 7

Part 3: But why?

Individual Traces

Automatic Metrics

Service Graphs

Most people should probably
be implementing

auto-instrumentation
Lesson 8

Sidenote: Manual Instrumentation

Instrumentation = modifying ALL YOUR CODE

from opentelemetry import trace
from opentelemetry.trace import Status,
StatusCode

tracer =
trace.get_tracer("sample-python-handler")

def parent_work():
 with
tracer.start_as_current_span("parent") as
parent_span:
 print("Calling Children..")
 parent_span.set_attribute("foo",
"bar")
 child_work("bob")
 child_work("dick")
 child_work("harry")

def child_work(child_name):
 with
tracer.start_as_current_span("child") as
child_span:
 try:
 print(child_name + " where
are you?")
 print("Here I am!")
 except:
 child_span.set_status(
 Status(StatusCode.ERROR)
)

Pattern matching

Only instruments frameworks and libraries

Monitoring

Separation of Tasks

Signals

Write code

Send
signals

Ask new
question

View
results

Observability

Signals

Ask new
question

Write
new

query

View
results

Write
code

Instrument
code

Send
signals

Part 4: Miscellaneous

AWS Lambda

● The ADOT Lambda Layer includes a collector
○ This dramatically increases execution time of your functions

● We have had good experiences with external collectors
○ Use upstream OpenTelemetry layers instead
○ These split the collector and language layers - use the latter

● The layer is fine when execution time isn’t important

(We didn’t actually do any public performance testing here
to demonstrate - “trust me bro” or test it yourself)

Beyla (eBPF) - PetClinic (Java) 1VU - RED

Beyla (eBPF) - PetClinic (Java) 1VU - USE

What did we learn?

● Auto-Instrumentation does use resources
● Manual Instrumentation also uses resources
● Manual Instrumentation performance depends on the

implementation
● Auto-Instrumentation performance is far more consistent
● Testing other applications says nothing about YOUR

application
● An application that is doing something significant is

probably not impacted by auto-instrumentation
● Performance Testing is incredibly important!
● Most people should probably be implementing

auto-instrumentation

James
Belchamber

Substruct

✉ james@substruct.co.uk

🌐 https://www.substruct.co.uk/

Personal

✉ james@belchamber.com

🌐 https://james.belchamber.com/

Any community-led projects
out there that want to
start instrumenting?

Talk to us :)

Any questions?

mailto:james@substruct.co.uk
https://james.belchamber.com/
mailto:james@belchamber.com
https://james.belchamber.com/

