
Constant time big integers
in Ada and SPARK

César SAGAERT
https://github.com/AldanTanneo/bigints

https://github.com/AldanTanneo/bigints

The need for constant time cryptographic primitives 2/14

• Avoid side channels in cryptography
code

• Provide strong primitives for the Ada
ecosystem

3/14

What I wrote
• Big integer library in Ada and SPARK, for the Ada ecosystem

• Design and algorithms heavily inspired by Rust’s crypto-bigint [1]

• All functions in constant time unless explicitly named *_Vartime

Disclaimer: unaudited code written by a single person, do not use for security critical
applications 😠

What does constant-time mean anyway 4/14

“Constant time” algorithms:
• no branching depending on secret values

• no memory accesses depending on secret values

This includes hidden variable-time constructs like the div instruction on x86…

Side channels from non-constant time implementations
• timing / power consumption attacks

• cache access analysis

for ex: binary exponentiation leaks secret RSA exponent (power analysis) or number
of 1 bits in exponent (timing analysis)

What does constant-time mean anyway 5/14

6/14

But:
• Code less readable, harder to audit

• Code is (usually) slower

• Optimizing compilers might recognize your constant-time algorithm and replace it
with a faster, variable-time one! 😖

Example of CT algorithm implementation 7/14

Binary exponentiation
Variable time

function Pow (A : Uint; N : Natural)
return Uint is
 Y : Uint := ONE;
 X : Uint := A;
begin
 for I in 0 .. BITS - 1 loop
 if Bit (N, I) then
 Y := Y * X;
 end if;
 X := X * X;
 end loop;
 return Y;
end Pow;

Constant time

function Pow (A : Uint; N : Natural)
return Uint is
 Y : Uint := ONE;
 X : Uint := A;
 B : Boolean;
begin
 for I in 0 .. BITS - 1 loop
 B := Bit (N, I);
 Y := Cond_Select (Y, Y * X, B);
 X := X * X;
 end loop;
 return Y;
end Pow;

8/14

The Cond_Select primitive is implemented with xor-ing and masking:

𝑓(𝑎, 𝑏,mask) = 𝑎 ⊕ (mask ⋅ (𝑎 ⊕ 𝑏))

Some care must be taken when transforming a boolean condition into a mask, so as
to not have a hidden branch from compiler optimization.

Formal proof of contracts
in SPARK

What SPARK brings to the table 10/14

• Guarantee no runtime errors

• Proof of bitwise operations used in CT algorithms

function Cond_Select (A, B : Uint; C : Choice) return Uint with
 Post => Cond_Select'Result = (if To_Bool (C) then B else A);

procedure CSwap (A, B : in out Uint; C : Choice) with
 Post => (if To_Bool (C) then B = A'Old and then A = B'Old
 else A = A'Old and then B = B'Old);

⚠ We cannot prove that they effectively are in constant time

11/14

In fact, all constant-time code that is not written in raw assembly
relies on best effort implementations
• Obfuscate intent from the compiler

• Add optimization barriers
for ex: System.Machine_Code.Asm ("", Volatile => True)

To convince ourselves that our code is constant time
• Audit assembly output

• Measure execution time w. statistics on cycles, cache, power draw…

12/14

High level proofs

• Higher level proofs in the library? using Ada’s Big_Integer package to model own
representation

• Proving for ex. that A + B gives the correct result: accumulate the result and prove
the partial results are correct: ✅ 🎉

• Current GNATProve Alire package cannot prove these yet, so proof code is in a
separate branch (addition-proof)

Little showcase 13/14

• Test suite includes small elliptic curve implementation using the library’s modular
integer facilities [2], [3]

• Define operations on a prime field, by instantiating a generic package:

package U256s is new Bigints.Uints (256);
subtype U256 is U256s.Uint;
use U256s;

P : constant U256 := Shl (ONE, 255) - From_U64 (19);
-- Prime P = 2^255 - 19

package GF_P is new Bigints.Modular (U256s, P);
-- Prime field GF(P), used in Curve25519 operations 😄

• Available in the Alire index!

References

[1] “RustCrypto: Cryptographic Big Integers.” [Online]. Available: https://github.com/
RustCrypto/crypto-bigint

[2] “Constant time big integers in SPARK.” [Online]. Available: https://github.com/
AldanTanneo/bigints

[3] “Elliptic Curves for Security.” [Online]. Available: https://www.rfc-editor.org/rfc/
rfc7748

https://github.com/RustCrypto/crypto-bigint
https://github.com/RustCrypto/crypto-bigint
https://github.com/AldanTanneo/bigints
https://github.com/AldanTanneo/bigints
https://www.rfc-editor.org/rfc/rfc7748
https://www.rfc-editor.org/rfc/rfc7748

	What I wrote
	"Constant time" algorithms:
	Side channels from non-constant time implementations
	But:
	Binary exponentiation
	In fact, all constant-time code that is not written in raw assembly relies on implementations
	To convince ourselves that our code is constant time
	High level proofs
	References

