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Datadriven weather prediction

ATraditional physics-based models provide
accurate forecasts, but are computationally
expensive

A Substantial progress in datadriven weather
prediction in recent years

ARecently developed purely datadriven models
outperform physics-based models in many
standard forecast scores
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Datadriven weather prediction
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The ERAS dataset
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Our goal

ADevelop aninexpensive , data-driven forecasting model that can serve as a
baseline for comparison , having a similar role to:
A Persistence forecasting
A Climatology

AGain deeper understanding of theinderlying physics from the data

Dynamic Mode Decomposition (DMD) :
A Purely datadriven
A Computationally efficient
A Explainable
A Can approximate nonlinear dynamics through a linear approximation
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Dynamic Mode Decomposition

| | |
X=|x(t;) x(t) .. x(t;)
| | |

A Seeks the leading spectral decomposition
(eigenvalues and eigenvectors ) of the ]
best-fit linear operator ‘Athat relates two | | |
snapshot matrices in time X' =|x(t2) x(tz3) .. x(tms1)

A Provides abest-fit, linear characterization
of a non-linear dynamical system from

5 ‘A 5
data alone L i
A Connection with Koopman theory for LA\ A (-?A(; e 1A nn
dynamical systems N AE@EIH(C )
eigenvectors I eigenvalues
amplitudes
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Dynamic Mode

Connects the favorable aspects of
the SVD for spatial dimensionality
reduction and the FFT for temporal
frequency identification

Decomposition

Experiment Collect Data DMD

a) Diagnostics

past future

. S =
Xm—1 I T g e~ » @
’ A=X'X" o|@k ) L

4 = ) E

aQ

— : 2

’ Regression [ V&

X9 X3 X t

Reproduced from Kutz et al. (2016)
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Optimized DMDoptDMD

N AEA@RR( )
| e by -+ 07[e¥ils
A Original DMD stronglyaffected by the presence $1 o Pr [‘ ” :
of noise | o | |LO - bpllewrts
A optDMD (_Askham & Kutz, 2018is anpn-linear optDMD solves:
optimization of DMDenabled by variable
projection methods A O EliR Rl h
A Avoids much of the bias of exact DMD "
A Can be viewed asa postprocessing step of the where diag(b)
original DMD algorithm
ApproxoptDMD:
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ThePyDMDpackage

AA Python package for performing DMDittps://github.com/PyDMD/PyDMD

ATheoptDMD algorithm of Askham & Kutz (2018) is implemented in the
BOPDMD class oPyDMD

AWe have implemented a newiit_econ method for a much cheaper DMD fit:
https://github.com/PyDMD/PyDMD/pull/568

from pydmd import BOPDMD

bopdmd = BOPDMDB{vd_rank =12, proj_basis =U)

bopdmd.fit (X, t) # intractable if X is very large!
bopdmd.fit_econ (s, V,t) # can run on a laptop in seconds
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https://github.com/PyDMD/PyDMD
https://github.com/PyDMD/PyDMD/pull/568

Combining DMD models
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A Although we can applyoptDMD
to the rankr approximation of X,
we still need to compute the
SVD ofX N

A Can we build separate DMD
models for much-smaller
subsamples of Xand combine
them together to produce a
forecast? ) 15d
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Combining DMD models
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