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• Native memory tracking
● Groups native allocations into categories
● Presents statistics regarding these 

allocations

Native memory tracking – what is it?
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Native memory tracking – what is it?

Total:  reserved=664192KB,  committed=253120KB                                           <--- total memory tracked by 
Native Memory Tracking
 
-                 Java Heap (reserved=516096KB, committed=204800KB)                      <--- Java Heap
                            (mmap: reserved=516096KB, committed=204800KB)
 
-                     Class (reserved=6568KB, committed=4140KB)                          <--- class metadata
                            (classes #665)                                               <--- number of loaded classes
                            (malloc=424KB, #1000)                                        <--- malloc'd memory, #number 
of malloc
                            (mmap: reserved=6144KB, committed=3716KB)
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•  ✅ Hotspot – The Java Virtual Machine

•  ❌ Core libraries

•  ❌ FFM, the Foreign Function & Memory API

•   ❌ Third party libraries

Native memory tracking today
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•  ✅ Hotspot

•  ❌ Core libraries – Libraries implemented in C and exposed to Java via JNI 

•  ❌ FFM, the Foreign Function & Memory API

•   ❌ Third party libraries

Native memory tracking today
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•  ✅ Hotspot

•  ❌ Core libraries 

•  ❌ FFM, the Foreign Function & Memory API – C/Java interop without JNI

•   ❌ Third party libraries

Native memory tracking today
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•  ✅ Hotspot

•  ❌ Core libraries 

•  ❌ FFM, the Foreign Function & Memory API

•   ❌ Third party libraries – C libraries whose source we do not control

Native memory tracking today
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•  ✅ Hotspot

•  ✅ Core libraries

•  ✅ FFM, the Foreign Function & Memory API

•   ❌ Third party libraries

Native memory tracking tomorrow?



Copyright © 2025, Oracle and/or its affiliates9

•  ✅ Hotspot

•  ✅ Core libraries

•  ✅ FFM, the Foreign Function & Memory API

•   ❌ Third party libraries

What’s the minimal change set required for this change?

Native memory tracking tomorrow?
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• NMT has MemTags

• Statistics done via atomically changing entries in a statically sized array

• MemTags are put into each malloc at the start via a header datastructure

A look at the internals

 +--------------+-------------  ....  ------------------+ 
 |    header   |                    user                    | 
 |                  |                allocation                | 
 +--------------+-------------  ....  ------------------+ 
     16 bytes              user size                      
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• NMT has MemTags 

• Statistics done via atomically changing entries in a statically sized array

• MemTags are put into each malloc at the start via a header datastructure

• MemTags are defined statically in an enum

A look at the internals
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• NMT has MemTags

• Statistics done via atomically changing entries in a statically sized array

• MemTags are put into each malloc at the start via a header datastructure

• MemTags are defined statically in an enum

• All functionality in NMT’s summary mode depends on handing out and receiving MemTags

A look at the internals
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• NMT has MemTags

• Statistics done via atomically changing entries in a statically sized array

• MemTags are put into each malloc at the start via a header datastructure

• MemTags are defined statically in an enum

• All functionality in NMT’s summary mode depends on handing out and receiving MemTags

So just give Java and C access to MemTags?

A look at the internals
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• Ditch MemTags as enum members
● Make them dynamically creatable!

• Then we can expose them via an interface in jvm.h for the native libraries

• And a Java interface for FFM

A plan for tackling the problem!



Let’s enact the plan!
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• We need:
● Lock free access to the memory tag accounting
● Dynamically adding MemTags
● Only use as much memory as is needed to support the use case

Dynamically creatable MemTags
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• We need:
● Lock free access to the memory tag accounting
● Dynamically adding MemTags
● Only use as much memory as is needed to support the use case

• So we:
● Make MemTag 4 bytes long instead of 1 (because 256 MemTags is too few, 2**32 is definitely 

enough)
● Add a linear allocator using mmap to page in new memory as needed

● Allows for ‘resizing’ without moving any memory
● Allows for graceful failure if out of memory

● Add a MemTag factory which takes strings and returns MemTags

Dynamically creatable MemTags



Copyright © 2025, Oracle and/or its affiliates18

So we:
● Make MemTag 4 bytes long instead of 1 (because 256 MemTags is too few, 2**32 is definitely 

enough)
● Add a linear allocator using mmap to page in new memory as needed

● Allows for ‘resizing’ without moving any memory
● Allows for graceful failure if out of memory

● Add a MemTag factory which takes strings and returns MemTags
● A dual table: Name to MemTag/MemTag to name

● Simple closed hashtables, with some space saving tricks applied
● Accessing these can be done under a lock – it’s a much rarer operation

Dynamically creatable MemTags



Data structure layout
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• CategoryStats 64 bytes
● Exactly 1 cache line (avoids false sharing)

• Use 4-byte indices instead of pointers
● base + index = address
● Save 4 bytes per reference
● No necessity to update pointers
● Con: 4GiB limit

● Unlikely to be issue

typedef uint32_t MemTag

typedef uint32_t StringRef

typedef uint32_t EntryRef

CategoryStats { u64 x 8 }



Data structure layout
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MemTag to name table

Name to MemTag table

CategoryStats
CategoryStats

...

mtGC\0
mtNMT\0

StringRef
MemTag
EntryRef
StringRef
MemTag
EntryRef

EntryRef
EntryRef
EntryRef
EntryRef

MemTag make_tag_if_absent(const char*) hash % bucket_size

typedef uint32_t MemTag

typedef uint32_t StringRef

typedef uint32_t EntryRef

CategoryStats { u64 x 8 }

CategoryStats* stats_of(MemTag)

StringRef
StringRef



Exporting this to C
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• JVM.h API
● Arena-style API

● Allocations ‘belong’ to an arena. In other words: They belong to a MemTag
● Devs familiar with thinking about allocations belonging to an arena from the FFM API

JVM API
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JVM API

typedef uint32_t arena_t;
arena_t JNICALL JVM_MakeArena(const char *name);
void *JVM_ArenaAlloc(size_t size, arena_t a);
void  JVM_ArenaFree(void *ptr);
void *JVM_ArenaRealloc(void *p, size_t size, arena_t a);
void *JVM_ArenaCalloc(size_t numelems, size_t elemsize, arena_t a);

/* Virtual memory operations such as reserve_memory omitted */



Let’s use it!
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Example C program

arena_t deflate_arena;
jlong Java_java_util_zip_Deflater_init(…) {
 deflate_arena = JVM_MakeArena(“java.util.zip.Deflater”);
}
static voidpf local_allocation(voidpf opaque, uInt items, uInt size) {
 return JVM_ArenaCalloc(items, size, deflate_arena);
}
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Example C program

arena_t zip_arena = 0;
bool initialized = 0;
const char* arena_name = "java.util.zip";
arena_t arena() {
 if (!initialized) {
  zip_arena = JVM_MakeArena(arena_name); initialized = 1;
 }

 return zip_arena;
}



What about FFM?
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• Expose NMT via JNI – A set of native methods corresponding to the C API

• Replace the usage of sun.misc.Unsafe, instead use NMT

• Equip Arenas with constructors taking strings as names

FFM
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• Expose NMT via JNI – A set of native methods corresponding to the C API

• Replace the usage of sun.misc.Unsafe, instead use NMT

• Equip Arena’s with constructors taking strings as names
● Ouch! A lot of indirection in the Java code makes this a bit painful to implement
● But really… It all boils down to Unsafe.allocatememory0

FFM



What does this mean for the JDK?
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• May change how we do things in the VM
● Tags are so cheap and dynamic that:

● We can have namespacing for NMT
● GrowableArray(MemTag super_group);
● MemTag gcCardTable = make_memtag(“gc.CardTable”);
● Today: GrowableArray<MemTag MT>; Tomorrow: No answer :-(
● Requires some sort of consistency rules

What does this mean for the JDK?
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• Better analysis of memory issues
● Much easier to determine if it’s a JVM, Java core library, or a user application issue
● Easier FFM => More C interop => Good with better memory analysis?
● With more readily parsable output we can use this for all kinds of cool analysis 

What does this mean for the JDK?



Thank you

Johan Sjölén
johan.sjolen@oracle.com
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