
NMT for all -
Extending NMT
beyond Hotspot
Johan Sjölén
Oracle JPG

Copyright © 2025, Oracle and/or its affiliates1

Copyright © 2025, Oracle and/or its affiliates2

• Native memory tracking
● Groups native allocations into categories
● Presents statistics regarding these

allocations

Native memory tracking – what is it?

Copyright © 2025, Oracle and/or its affiliates3

Native memory tracking – what is it?

Total: reserved=664192KB, committed=253120KB <--- total memory tracked by
Native Memory Tracking

- Java Heap (reserved=516096KB, committed=204800KB) <--- Java Heap
 (mmap: reserved=516096KB, committed=204800KB)

- Class (reserved=6568KB, committed=4140KB) <--- class metadata
 (classes #665) <--- number of loaded classes
 (malloc=424KB, #1000) <--- malloc'd memory, #number
of malloc
 (mmap: reserved=6144KB, committed=3716KB)

Copyright © 2025, Oracle and/or its affiliates4

• ✅ Hotspot – The Java Virtual Machine

• ❌ Core libraries

• ❌ FFM, the Foreign Function & Memory API

• ❌ Third party libraries

Native memory tracking today

Copyright © 2025, Oracle and/or its affiliates5

• ✅ Hotspot

• ❌ Core libraries – Libraries implemented in C and exposed to Java via JNI

• ❌ FFM, the Foreign Function & Memory API

• ❌ Third party libraries

Native memory tracking today

Copyright © 2025, Oracle and/or its affiliates6

• ✅ Hotspot

• ❌ Core libraries

• ❌ FFM, the Foreign Function & Memory API – C/Java interop without JNI

• ❌ Third party libraries

Native memory tracking today

Copyright © 2025, Oracle and/or its affiliates7

• ✅ Hotspot

• ❌ Core libraries

• ❌ FFM, the Foreign Function & Memory API

• ❌ Third party libraries – C libraries whose source we do not control

Native memory tracking today

Copyright © 2025, Oracle and/or its affiliates8

• ✅ Hotspot

• ✅ Core libraries

• ✅ FFM, the Foreign Function & Memory API

• ❌ Third party libraries

Native memory tracking tomorrow?

Copyright © 2025, Oracle and/or its affiliates9

• ✅ Hotspot

• ✅ Core libraries

• ✅ FFM, the Foreign Function & Memory API

• ❌ Third party libraries

What’s the minimal change set required for this change?

Native memory tracking tomorrow?

Copyright © 2025, Oracle and/or its affiliates10

• NMT has MemTags

• Statistics done via atomically changing entries in a statically sized array

• MemTags are put into each malloc at the start via a header datastructure

A look at the internals

 +--------------+------------- ------------------+
 | header | user |
 | | allocation |
 +--------------+------------- ------------------+
 16 bytes user size

Copyright © 2025, Oracle and/or its affiliates11

• NMT has MemTags

• Statistics done via atomically changing entries in a statically sized array

• MemTags are put into each malloc at the start via a header datastructure

• MemTags are defined statically in an enum

A look at the internals

Copyright © 2025, Oracle and/or its affiliates12

• NMT has MemTags

• Statistics done via atomically changing entries in a statically sized array

• MemTags are put into each malloc at the start via a header datastructure

• MemTags are defined statically in an enum

• All functionality in NMT’s summary mode depends on handing out and receiving MemTags

A look at the internals

Copyright © 2025, Oracle and/or its affiliates13

• NMT has MemTags

• Statistics done via atomically changing entries in a statically sized array

• MemTags are put into each malloc at the start via a header datastructure

• MemTags are defined statically in an enum

• All functionality in NMT’s summary mode depends on handing out and receiving MemTags

So just give Java and C access to MemTags?

A look at the internals

Copyright © 2025, Oracle and/or its affiliates14

• Ditch MemTags as enum members
● Make them dynamically creatable!

• Then we can expose them via an interface in jvm.h for the native libraries

• And a Java interface for FFM

A plan for tackling the problem!

Let’s enact the plan!

Copyright © 2025, Oracle and/or its affiliates16

• We need:
● Lock free access to the memory tag accounting
● Dynamically adding MemTags
● Only use as much memory as is needed to support the use case

Dynamically creatable MemTags

Copyright © 2025, Oracle and/or its affiliates17

• We need:
● Lock free access to the memory tag accounting
● Dynamically adding MemTags
● Only use as much memory as is needed to support the use case

• So we:
● Make MemTag 4 bytes long instead of 1 (because 256 MemTags is too few, 2**32 is definitely

enough)
● Add a linear allocator using mmap to page in new memory as needed

● Allows for ‘resizing’ without moving any memory
● Allows for graceful failure if out of memory

● Add a MemTag factory which takes strings and returns MemTags

Dynamically creatable MemTags

Copyright © 2025, Oracle and/or its affiliates18

So we:
● Make MemTag 4 bytes long instead of 1 (because 256 MemTags is too few, 2**32 is definitely

enough)
● Add a linear allocator using mmap to page in new memory as needed

● Allows for ‘resizing’ without moving any memory
● Allows for graceful failure if out of memory

● Add a MemTag factory which takes strings and returns MemTags
● A dual table: Name to MemTag/MemTag to name

● Simple closed hashtables, with some space saving tricks applied
● Accessing these can be done under a lock – it’s a much rarer operation

Dynamically creatable MemTags

Data structure layout

Copyright © 2025, Oracle and/or its affiliates19

• CategoryStats 64 bytes
● Exactly 1 cache line (avoids false sharing)

• Use 4-byte indices instead of pointers
● base + index = address
● Save 4 bytes per reference
● No necessity to update pointers
● Con: 4GiB limit

● Unlikely to be issue

typedef uint32_t MemTag

typedef uint32_t StringRef

typedef uint32_t EntryRef

CategoryStats { u64 x 8 }

Data structure layout

Copyright © 2025, Oracle and/or its affiliates20

MemTag to name table

Name to MemTag table

CategoryStats
CategoryStats

...

mtGC\0
mtNMT\0

StringRef
MemTag
EntryRef
StringRef
MemTag
EntryRef

EntryRef
EntryRef
EntryRef
EntryRef

MemTag make_tag_if_absent(const char*) hash % bucket_size

typedef uint32_t MemTag

typedef uint32_t StringRef

typedef uint32_t EntryRef

CategoryStats { u64 x 8 }

CategoryStats* stats_of(MemTag)

StringRef
StringRef

Exporting this to C

Copyright © 2025, Oracle and/or its affiliates22

• JVM.h API
● Arena-style API

● Allocations ‘belong’ to an arena. In other words: They belong to a MemTag
● Devs familiar with thinking about allocations belonging to an arena from the FFM API

JVM API

Copyright © 2025, Oracle and/or its affiliates23

JVM API

typedef uint32_t arena_t;
arena_t JNICALL JVM_MakeArena(const char *name);
void *JVM_ArenaAlloc(size_t size, arena_t a);
void JVM_ArenaFree(void *ptr);
void *JVM_ArenaRealloc(void *p, size_t size, arena_t a);
void *JVM_ArenaCalloc(size_t numelems, size_t elemsize, arena_t a);

/* Virtual memory operations such as reserve_memory omitted */

Let’s use it!

Copyright © 2025, Oracle and/or its affiliates25

Example C program

arena_t deflate_arena;
jlong Java_java_util_zip_Deflater_init(…) {
 deflate_arena = JVM_MakeArena(“java.util.zip.Deflater”);
}
static voidpf local_allocation(voidpf opaque, uInt items, uInt size) {
 return JVM_ArenaCalloc(items, size, deflate_arena);
}

Copyright © 2025, Oracle and/or its affiliates26

Example C program

arena_t zip_arena = 0;
bool initialized = 0;
const char* arena_name = "java.util.zip";
arena_t arena() {
 if (!initialized) {
 zip_arena = JVM_MakeArena(arena_name); initialized = 1;
 }

 return zip_arena;
}

What about FFM?

Copyright © 2025, Oracle and/or its affiliates28

• Expose NMT via JNI – A set of native methods corresponding to the C API

• Replace the usage of sun.misc.Unsafe, instead use NMT

• Equip Arenas with constructors taking strings as names

FFM

Copyright © 2025, Oracle and/or its affiliates29

• Expose NMT via JNI – A set of native methods corresponding to the C API

• Replace the usage of sun.misc.Unsafe, instead use NMT

• Equip Arena’s with constructors taking strings as names
● Ouch! A lot of indirection in the Java code makes this a bit painful to implement
● But really… It all boils down to Unsafe.allocatememory0

FFM

What does this mean for the JDK?

Copyright © 2025, Oracle and/or its affiliates31

• May change how we do things in the VM
● Tags are so cheap and dynamic that:

● We can have namespacing for NMT
● GrowableArray(MemTag super_group);
● MemTag gcCardTable = make_memtag(“gc.CardTable”);
● Today: GrowableArray<MemTag MT>; Tomorrow: No answer :-(
● Requires some sort of consistency rules

What does this mean for the JDK?

Copyright © 2025, Oracle and/or its affiliates32

• Better analysis of memory issues
● Much easier to determine if it’s a JVM, Java core library, or a user application issue
● Easier FFM => More C interop => Good with better memory analysis?
● With more readily parsable output we can use this for all kinds of cool analysis

What does this mean for the JDK?

Thank you

Johan Sjölén
johan.sjolen@oracle.com

Copyright © 2025, Oracle and/or its affiliates33

	Presentation Template: Light
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Thank you

