POSIX Signals In
Userspace

on the Redox ukernel

Jacob Lorentzon @dOX OS

Redox OS

- Unix-like userspace, on continuously shrinking pkernel
- Plan 9-inspired userspace filesystems

- Community-developed since 2015

- Written in Rust

Including our libc, relibc!
Some 3rd-party exceptions

- POSIX source-level compatibility

- Recent focus and progress on porting software
COSMIC apps
nushell
RustPython
GCC

(R&dox OS

Me

- Redox contributor since 2019

- Redox Summer of Code 2020..=2023

1/O
Userspaceification of fork/execv
Demand paging implementation

- NLnet project (2024-2025)

Userspace signal handling
Userspace process management

(R&dox OS

Architecture

System Services

Device Drivers

Application aka aka
userspace schemes driver schemes
Stable ABI file-like services file-like services

A

System Call Interface

MKernel

file-like services

Kernel Services
aka
kernel schemes

user space

kernel space

[Redox OS

Architecture

- Heavily file descriptor based, albeit some global
state remains

- File syscalls are handled by “schemes”

- Syscall ABI intentionally kept unstable, shifting
the stability layer to redox-rt

- POSIX and many other crucial parts moving
incrementally to userspace libs

- Drivers run in separate userspace programs

- Kernel <30 kSLoC (~100k with dependencies)

i relibc

Application

relibc ABI

l libredox ABI

redox-rt

X

syscall ABI

Stable ABI

process manager i

X

syscall ABI

Y

kernel

(R&dox OS

Relibc

- C library written in Rust Hzs AR

- Even headers! (apart from macros, etc.) relibc

- Rustifying over time, reducing unsafe {} Lo gt || T Redox target
- Redox and Linux support ot
- Focus on most of POSIX crate
- Source-level compatibility ¥ ¥
- Two backends &yetom b

- relibc ->raw syscalls (Linux) calls calls

- relibc -> redox-rt (Redox)

(R&dox OS

Redox-rt

Underlying relibc backend when targeting Redox

- Intended to become freestanding ABI

Backend for Rustix
WASI
Library “emulation”

- One of few components ‘allowed’ to syscall directly
- Handles most proc state and syscalls

- Fork/exec

- Signal handling!

- (Userspace proc manager WIP)

@dox OS

POSIX signals

- Userspace analogue of interrupts
- Asynchronous

- ~64 of them

- Can mask/ignore

- Syscall interruption

@dcx OS

Problem

- Userspace needs state, and locks!

- Functions like open(3) are async safe, need sigprocmask :(
- In kernel mode, interrupts are almost always disabled

- Disabling/enabling ~20 cycles

- Userspace needs to enable/disable signals more often

- Syscall, ~200 cycles!

- What about... shared memory?

@dox OS

Signals Protocol

- Goal: low cost sigprocmask ideally bypassing the kernel
- Goal: keep most state in, or accessible by, userspace

- Goal: provide a basic IPC cancellation primitive

- Solution: store signal state in kernel-shared page!

- Basic primitive very simple for the kernel

- Makes userspace slightly more complex

@dox OS

Protocol

- Atomic ops!

- Per-thread: combined ‘allowset’ and ‘pending set’

- Logical AND gives the deliverable signals

- Thread-local flag for temporarily inhibiting signals, used internally

- Per-process pending set

- Kernel-accessible siginfo_t-like flags

- Ad-hoc exceptions for certain signals like SIGTSTP

- In-kernel queue for realtime signals, but lock-freedom theoretically possible

(CMPXHG16B)
@dox OS

Protocol

Per-thread allowset
Per-process and per-thread
pending set (bitwise ORed)

Signal 1 2 3 4 5 6 7 8
Pending 0 0 1 1 1 0 0 0
Allow 1 1 1 0 1 1 1 1
Deliver 0 0 1 0 1 0 0 0
Mask: 0
l Pick lowest
Deliver?

(R&dox OS

Signal sending

- Single-producer-multi-consumer
- Sender is kernel

- pthread_kill
- Set pending
- Check allowset, conditionally interrupt
- Will clear bit once trampoline is entered
- kill
- Set process-level pending
- For all threads, check allowset
- If unblocked, wake up thread
- Spurious signals can occur, but only if actively enabled/disabled
- Similarly, wait for first thread to clear bit

(R&dox OS

Cancellation

@dox OS

IPC

1. Userspace calls e.g. SYS_PREAD2

2. Kernel maps buffer virtually, queues request, yields thread

3. ... Switch to server ...

4. Scheme daemon handles request, queues response, calls kernel
5. ... Switch to client ...

6. Kernel returns from pread2

Synchronous, even when IO is non-blocking

@dox OS

Cancellation

- Kernel checks process’s and thread’s masks before sleeping

- But how are synchronous calls interrupted?

- Interrupt results in cancellation request, scheme hopefully returns early

- Only SIGKILL can force-cancel an IPC syscall

- TODO: asynchronous syscalls or detaching POSIX calls from underlying IPC
primitive

(R&dox OS

Conclusion

Increased (signal) POSIX coverage, for porting

Although standard is vague in certain areas (e.g. realtime sigs)
And “monolithic™

- ldeally need further impl. testing

- Userspace process manager

- Dynamically linked relibc/redox-rt is close

- Improved mechanisms for moving state to userspace
- Further “userspaceification”!

(R&dox OS

Thanks for listening!

Questions?

@dox OS

Links

- https://redox-0s.org/

- https://ninet.nl/project/RedoxOS-Signals/

- https://fosdem.org/2025/schedule/event/fosdem-2025-5670-posix-signals-in-u
ser-space-on-the-redox-microkernel/

- https://[fosdem.orq/2025/schedule/event/fosdem-2025-597 3-redox-0s-a-micro
kernel-based-unix-like-os/

@dox OS

https://redox-os.org/
https://nlnet.nl/project/RedoxOS-Signals/
https://fosdem.org/2025/schedule/event/fosdem-2025-5670-posix-signals-in-user-space-on-the-redox-microkernel/
https://fosdem.org/2025/schedule/event/fosdem-2025-5670-posix-signals-in-user-space-on-the-redox-microkernel/
https://fosdem.org/2025/schedule/event/fosdem-2025-5973-redox-os-a-microkernel-based-unix-like-os/
https://fosdem.org/2025/schedule/event/fosdem-2025-5973-redox-os-a-microkernel-based-unix-like-os/

