
POSIX Signals in 
Userspace

on the Redox µkernel

Jacob Lorentzon



Redox OS

- Unix-like userspace, on continuously shrinking µkernel
- Plan 9-inspired userspace filesystems
- Community-developed since 2015
- Written in Rust

- Including our libc, relibc!
- Some 3rd-party exceptions

- POSIX source-level compatibility
- Recent focus and progress on porting software

- COSMIC apps
- nushell
- RustPython 
- GCC



Me

- Redox contributor since 2019
- Redox Summer of Code 2020..=2023

- I/O
- Userspaceification of fork/execv
- Demand paging implementation

- NLnet project (2024-2025)
- Userspace signal handling
- Userspace process management



Architecture

Kernel Services
aka

kernel schemes

file-like services

µKernel

System Call Interface

Stable ABI file-like services file-like services

Application
System Services

aka
userspace schemes

Device Drivers
aka

driver schemes

user space

kernel space



Architecture

- Heavily file descriptor based, albeit some global 
state remains

- File syscalls are handled by “schemes”
- Syscall ABI intentionally kept unstable, shifting 

the stability layer to redox-rt
- POSIX and many other crucial parts moving 

incrementally to userspace libs
- Drivers run in separate userspace programs
- Kernel <30 kSLoC (~100k with dependencies)

kernel

relibc

redox-rt process manager

Application

relibc ABI
libredox ABI

IPC

syscall ABI syscall ABI

Stable ABI

Unstable ABI implementation



Relibc

- C library written in Rust
- Even headers! (apart from macros, etc.)
- Rustifying over time, reducing unsafe {}

- Redox and Linux support
- Focus on most of POSIX
- Source-level compatibility
- Two backends

- relibc -> raw syscalls (Linux)
- relibc -> redox-rt (Redox)

Linux 
system 

calls

redox-rt
crate

Redox 
system 

calls

relibc

libc API/ABI

Linux target Redox target



Redox-rt

- Underlying relibc backend when targeting Redox
- Intended to become freestanding ABI

- Backend for Rustix
- WASI
- Library “emulation”

- One of few components ‘allowed’ to syscall directly
- Handles most proc state and syscalls
- Fork/exec
- Signal handling!
- (Userspace proc manager WIP)



POSIX signals

- Userspace analogue of interrupts
- Asynchronous
- ~64 of them
- Can mask/ignore
- Syscall interruption



Problem

- Userspace needs state, and locks!
- Functions like open(3) are async safe, need sigprocmask :(
- In kernel mode, interrupts are almost always disabled
- Disabling/enabling ~20 cycles
- Userspace needs to enable/disable signals more often
- Syscall, ~200 cycles!

- What about… shared memory?



Signals Protocol

- Goal: low cost sigprocmask ideally bypassing the kernel
- Goal: keep most state in, or accessible by, userspace
- Goal: provide a basic IPC cancellation primitive
- Solution: store signal state in kernel-shared page!
- Basic primitive very simple for the kernel
- Makes userspace slightly more complex



Protocol

- Atomic ops!
- Per-thread: combined ‘allowset’ and ‘pending set’
- Logical AND gives the deliverable signals
- Thread-local flag for temporarily inhibiting signals, used internally
- Per-process pending set
- Kernel-accessible siginfo_t-like flags
- Ad-hoc exceptions for certain signals like SIGTSTP
- In-kernel queue for realtime signals, but lock-freedom theoretically possible 

(CMPXHG16B)



Signal

Pending

Allow

Deliver

1 2 3 4 5 6 7 8

0 0 1 1 1 0 0 0

1 1 1 0 1 1 1 1

0 0 1 0 1 0 0 0

Pick lowest

Deliver?3 3

Mask: 0

Protocol

- Per-thread allowset
- Per-process and per-thread

pending set (bitwise ORed)



Signal sending

- Single-producer-multi-consumer
- Sender is kernel
- pthread_kill

- Set pending
- Check allowset, conditionally interrupt
- Will clear bit once trampoline is entered

- kill
- Set process-level pending
- For all threads, check allowset
- If unblocked, wake up thread
- Spurious signals can occur, but only if actively enabled/disabled
- Similarly, wait for first thread to clear bit



Cancellation



IPC

1. Userspace calls e.g. SYS_PREAD2
2. Kernel maps buffer virtually, queues request, yields thread
3. … Switch to server … 
4. Scheme daemon handles request, queues response, calls kernel
5. … Switch to client … 
6. Kernel returns from pread2

Synchronous, even when IO is non-blocking



Cancellation

- Kernel checks process’s and thread’s masks before sleeping
- But how are synchronous calls interrupted?
- Interrupt results in cancellation request, scheme hopefully returns early
- Only SIGKILL can force-cancel an IPC syscall
- TODO: asynchronous syscalls or detaching POSIX calls from underlying IPC 

primitive



Conclusion

- Increased (signal) POSIX coverage, for porting
- Although standard is vague in certain areas (e.g. realtime sigs)
- And “monolithic”!

- Ideally need further impl. testing
- Userspace process manager
- Dynamically linked relibc/redox-rt is close
- Improved mechanisms for moving state to userspace
- Further “userspaceification”!



Thanks for listening!
Questions?



Links

- https://redox-os.org/
- https://nlnet.nl/project/RedoxOS-Signals/
- https://fosdem.org/2025/schedule/event/fosdem-2025-5670-posix-signals-in-u

ser-space-on-the-redox-microkernel/ 
- https://fosdem.org/2025/schedule/event/fosdem-2025-5973-redox-os-a-micro

kernel-based-unix-like-os/ 

https://redox-os.org/
https://nlnet.nl/project/RedoxOS-Signals/
https://fosdem.org/2025/schedule/event/fosdem-2025-5670-posix-signals-in-user-space-on-the-redox-microkernel/
https://fosdem.org/2025/schedule/event/fosdem-2025-5670-posix-signals-in-user-space-on-the-redox-microkernel/
https://fosdem.org/2025/schedule/event/fosdem-2025-5973-redox-os-a-microkernel-based-unix-like-os/
https://fosdem.org/2025/schedule/event/fosdem-2025-5973-redox-os-a-microkernel-based-unix-like-os/

