

From: Wolfgang Jaehrling

Subject: Announcement: dmd -0.7

Date: Wed, 2 Apr 2003 21:44:52 +0200

;3 Announcement: dmd -0.7 -x= scheme -*-

(define about-this-release

"This is the second public release of dmd, the ‘Daemon managing
Daemons’ (or ‘Daemons-managing Daemon’?). This version adds many
convenient features and is thus a huge step forward, but still it is
experimental software and you should expect it to break.")

(define about-the-software

"The dmd program is a service manager, i.e. on the GNU system (which
is the primary target), it replaces /sbin/init completely, on systems
which are similar to Unix (e.g. GNU/Linux) it replaces the part of
/sbin/init that is responsible for switching runlevels (/etc/rc?.d and
/etc/init.d come to mind), respawning services (/etc/inittab comes to
mind) and similar things.")

From: Wolfgang Jaehrling

Subject: Announcement: dmd -0.7

Date: Wed, 2 Apr 2003 21:44:52 +0200

;5 Announcement: dmd -0.7 -x- scheme -*-

(define about-this-release

"This is the second p i
Daemons’ (or ‘Daemons-
convenient features an
experimental software

elease of dmd, the ‘Daemon managing
This version adds many

, but still it is
reak.")

(define about-the-software

"The dmd program is a service manager, i.e. on the GNU system (which
is the primary target), it replaces /sbin/init completely, on systems
which are similar to Unix (e.g. GNU/Linux) it replaces the part of
/sbin/init that is responsible for switching runlevels (/etc/rc?.d and
/etc/init.d come to mind), respawning services (/etc/inittab comes to
mind) and similar things.")

From: Wolfgang Jaehrling

Subject: Announcement: dmd -0.7

Date: Wed, 2 Apr 2003 21:44:52 +0200

;5 Announcement: dmd -0.7 -x- scheme -*-

(define about-this-release

"This is the second p i
Daemons’ (or ‘Daemons-
convenient features an
experimental software

elease of dmd, the ‘Daemon managing
his version adds many

, but still it is
reak.")

(define about-the-software

"The dmd em (which

is the pri systems
which are rt of
/sbin/init rc?.d and

/etc/init.d come to mind), respawning services (/etc/inittab comes to
mind) and similar things.")

initial RAM disk

Linux-libre

initial RAM disk 6\&\\e

initial RAM disk 3\

PID 1: The Shepherd!

services...

Linux-libre

initial RAM disk 3\

PID 1: The Shepherd! = e

services...

Linux-libre

initial RAM disk 3\

PID 1: The Shepherd! = e

services...

(define sshd
(service
’(sshd ssh-daemon) ;for convenience, give it two names
#:start (make-forkexec-constructor
*("/usr/sbin/sshd” "-D")
#:pid-file "/etc/ssh/sshd.pid")
#:stop (make-kill-destructor)
#:respawn? #t))

(register-services (list sshd))
(start-in-the-background ’ (sshd))

(define sshd
(service
’ (sshd ssh-daemon)
#:start (make-inetd-constructor
’("/usr/sbin/sshd” "-D" "-i")
(list (endpoint
(make-socket-address AF_INET INADDR_ANY 22))
(endpoint
(make-socket-address AF_INET6 ING6ADDR_ANY 22)))
#:max-connections 10)
#:stop (make-inetd-destructor)
#:respawn? #t))

(use-modules (shepherd service timer))

(define updatedb ;for ’locate’
(service

’ (updatedb)

#:start (make-timer-constructor
;; Fire at midnight and noon everyday.
(calendar-event #:hours ’(@ 12) #:minutes ’(0))
(command ’ ("/usr/bin/updatedb”

"--prunepaths=/tmp”)))
#:stop (make-timer-destructor)
#:actions (list timer-trigger-action)))

(define file-system-/mnt/disk
(service
’(file-system-/mnt/disk)
#:start (lambda _
(mount "/dev/sdb2" "/mnt/disk” "ext4"))
#:stop (lambda _
(umount "/mnt/disk"))))

Blurring the line

between users and developers
to increase user autonomy.

X
J‘o(L +OXEC
\

SIGCHLD

listen

SCce‘)t S
&pmn&nd

oxecule

jo (h+exec

wal

\
ﬁo(L TXEC

)

SIGCHLD
étoﬂ)e A

sto\)fil\j Ska{hv\j

NG

stered

[isten
ead

QG —
Ce\’t Cpmn&r\J

S ()

Q)(t’(tkte
jo (htevec
wal
no R file P j ile

/
kil Shorred!

/

stogped

After a fork() in a multithreaded program, the child
can safely call only async-signal-safe functions (see
signal-safety(7)) until such time as it calls execve(2).

LUW- LCVE L DLdLTD 11Ul LillD LITUUyll 22U LildL 22Ul Lwdl © Ldll UlsLlilyulsil LIe per llic
* state from this transitionary UNIT_INACTIVE state by looking at the low-ley
if (s->restart_mode != SERVICE_RESTART_MODE_DIRECT)
service_set_state(s, restart_state);

restart_usec_next = service restart_usec _next(s);

r = service_arm_timer(s, /* relative= */ true, restart_usec_next);

if (r <0) {
log_unit_warning_errno(UNIT(s), r, "Failed to install restart timer: ¢
service_enter_dead(s, SERVICE_FAILURE_RESOURCES, /* allow_restart= */
return;

log_unit_debug(UNIT(s), "Next restart interval calculated as: %s", FORMAT_TIME

service_set_state(s, SERVICE_AUTO_RESTART);

(let loop ()
(handle-signal-port signal-port)
(loop))

(let loop ()
(handle-signal-port signal-port)
(loop))

reading won't block!

(define (handle-signal-port port)
(let ((signal (consume-signalfd-siginfo port)))
(if (= SIGCHLD signal)
(match (waitpid WAIT_ANY WNOHANG)
((pid . status)
(put-message (current-process-monitor)
‘(handle-process-termination ,pid ,status))))

)

(let next-client ()
(match (accept sock (logior SOCK_NONBLOCK SOCK_CLOEXEC))
((command-source . client-address)
(spawn-fiber
(lambda ()
;; Read and execute client commands concurrently.
(process-connection command-source)))))
(next-client))

(define* (terminate-process pid signal
#:key (grace-period 5))
;5 Send signal to PID, or SIGKILL after grace period.
(let ((reply (make-channel)))
(put-message (current-process-monitor)
‘(await ,pid ,reply))
(catch-system-error (kill pid signal))

(match (get-message* reply grace-period #f)

(#f

;; Grace period is over, send SIGKILL.
(catch-system-error (kill pid SIGKILL))
(get-message reply))
(status

;5 Terminated on time!

status))))

(define (service-controller channel)
(let loop ((status ’stopped)

(value #f)
cel)
(match (get-message channel)
((’status reply) ;return the current status

(put-message reply status)
(loop status value ...))

((’start reply) ;start the service
L)) ~
((’stop reply) ;stop it
)

Y /

Slopped Stogped Stoppe

[/) [

doppy adking doppy sding oy Stading
Sk Sk S
Concurrent sequential processes.
opfed shopped sopped

stopfi/:y; Sé(ﬁv\g sto?f'/m }Miv\g Sk“’\’é }Wﬁ"ﬁ

N, NG NG,

sterled sherled stared

Sweat & tears.

(define (alice channel) (define (bob friend)

(let loop () (let ((reply (make-channel)))
(match (get-message channel) (put-message friend
(('say-hi-to-me reply) “(say-hi-to-me ,reply))

(put-message reply 'hi!))))) 'bye-bye!))

(define (alice channel) (define (bob friend)
(let loop (O make-channel)))
(match (g friend
(('say- o-me ,reply))
(put-me

“Hello, | wrote my own service
and now herd status hangs.”

thread apply all bt

... would be nice.

ned on Oct 29, 2022

AN
L~ civodul ope
As discussed in the context of the shepherd, Fibers 1.1.1 leaks memory on each context
ith Guile 3.0.8 or even 22.7)is this:

switch (1) The simplest reproducer (wi
@

(use—modules (fibers)
(fibers channels)
ct (yield—current-task})

((fibers schaduler) #:sele
(ice-9 rdelim)
(statprof})

(run»fibers

{run-Tibers

- aach context

gE’t' ang

{run-Tibers

- nach context

gE’t' ang

herd status

<

Dec 17, 2024 Share

Jack Wallen
The systemd developers have fixed a really nasty bug amid the release of the new GNU

Shepherd init system.

1.0.x bug-fix releases rolling

Guix integration: replacing rottlog, mcron,
syslogd

Fibers is solid! (and needs Q)
7.4K lines of code!
miss something from systemd? let’s hack!

%% ﬁﬁ‘ 'nu.‘

A TALE AS TOLD BY

WShepherd

https://gnu.org/s/shepherd
ludo@gnu.org | @civodul@toot.aquilenet.fr

https://gnu.org/s/shepherd

Copyright © 2025 Ludovic Courtés ludo@gnu.org.

Picture of Shepherd in Fagaras Mountains, Romania, by “friend of Darwinek”, under CC-BY-SA 3.0,
https://commons.wikimedia.org/wiki/File:Rumunia_5806. jpg

Goblins + Spritely drawing by Spritely Institute,
https://spritely.institute/news/spritely-nlnet-grants-december-2023.html

Shepherd logo by Luis Felipe Lopez Acevedo, under CC-BY-SA 4.0, https://git.savannah.gnu.org/cgit/shepherd/graphics.git.

This work is licensed under the Creative Commons Attribution-Share Alike 3.0 License. To view a copy of this license, visit
https://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San
Francisco, California, 94105, USA.

At your option, you may instead copy, distribute and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover
Texts, and no Back-Cover Texts. A copy of the license is available at https: //www.gnu.org/licenses/gfdl.html.

The source of this document is available from https://git.sv.gnu.org/cgit/guix/maintenance.git.

https://commons.wikimedia.org/wiki/File:Rumunia_5806.jpg
https://spritely.institute/news/spritely-nlnet-grants-december-2023.html
https://git.savannah.gnu.org/cgit/shepherd/graphics.git
https://creativecommons.org/licenses/by-sa/3.0/
https://www.gnu.org/licenses/gfdl.html
https://git.sv.gnu.org/cgit/guix/maintenance.git

