
The Shepherd:
Minimalism in PID 1
Ludovic Courtès
FOSDEM, 2 February 2025



From: Wolfgang Jaehrling
Subject: Announcement: dmd -0.7
Date: Wed, 2 Apr 2003 21:44:52 +0200
;; Announcement: dmd -0.7 -*- scheme -*-

(define about-this-release
"This is the second public release of dmd, the ‘Daemon managing

Daemons’ (or ‘Daemons-managing Daemon’?). This version adds many
convenient features and is thus a huge step forward, but still it is
experimental software and you should expect it to break.")

(define about-the-software
"The dmd program is a service manager, i.e. on the GNU system (which

is the primary target), it replaces /sbin/init completely, on systems
which are similar to Unix (e.g. GNU/Linux) it replaces the part of
/sbin/init that is responsible for switching runlevels (/etc/rc?.d and
/etc/init.d come to mind), respawning services (/etc/inittab comes to
mind) and similar things.")



From: Wolfgang Jaehrling
Subject: Announcement: dmd -0.7
Date: Wed, 2 Apr 2003 21:44:52 +0200
;; Announcement: dmd -0.7 -*- scheme -*-

(define about-this-release
"This is the second public release of dmd, the ‘Daemon managing

Daemons’ (or ‘Daemons-managing Daemon’?). This version adds many
convenient features and is thus a huge step forward, but still it is
experimental software and you should expect it to break.")

(define about-the-software
"The dmd program is a service manager, i.e. on the GNU system (which

is the primary target), it replaces /sbin/init completely, on systems
which are similar to Unix (e.g. GNU/Linux) it replaces the part of
/sbin/init that is responsible for switching runlevels (/etc/rc?.d and
/etc/init.d come to mind), respawning services (/etc/inittab comes to
mind) and similar things.")

Revived in 2013!



From: Wolfgang Jaehrling
Subject: Announcement: dmd -0.7
Date: Wed, 2 Apr 2003 21:44:52 +0200
;; Announcement: dmd -0.7 -*- scheme -*-

(define about-this-release
"This is the second public release of dmd, the ‘Daemon managing

Daemons’ (or ‘Daemons-managing Daemon’?). This version adds many
convenient features and is thus a huge step forward, but still it is
experimental software and you should expect it to break.")

(define about-the-software
"The dmd program is a service manager, i.e. on the GNU system (which

is the primary target), it replaces /sbin/init completely, on systems
which are similar to Unix (e.g. GNU/Linux) it replaces the part of
/sbin/init that is responsible for switching runlevels (/etc/rc?.d and
/etc/init.d come to mind), respawning services (/etc/inittab comes to
mind) and similar things.")

Revived in 2013!

1.0 in December 2024!



Linux-libre



Linux-libre

initial RAM disk



Linux-libre

initial RAM disk Guile



Linux-libre

initial RAM disk

PID 1: The Shepherd!
services...

Guile



Linux-libre

initial RAM disk

PID 1: The Shepherd!
services...

Guile

Guile



Linux-libre

initial RAM disk

PID 1: The Shepherd!
services...

applications

Guile

Guile



Demo time!



(define sshd
(service

’(sshd ssh-daemon) ;for convenience, give it two names
#:start (make-forkexec-constructor

’("/usr/sbin/sshd" "-D")
#:pid-file "/etc/ssh/sshd.pid")

#:stop (make-kill-destructor)
#:respawn? #t))

(register-services (list sshd))
(start-in-the-background ’(sshd))



(define sshd
(service

’(sshd ssh-daemon)
#:start (make-inetd-constructor

’("/usr/sbin/sshd" "-D" "-i")
(list (endpoint

(make-socket-address AF_INET INADDR_ANY 22))
(endpoint
(make-socket-address AF_INET6 IN6ADDR_ANY 22)))

#:max-connections 10)
#:stop (make-inetd-destructor)
#:respawn? #t))



(use-modules (shepherd service timer))

(define updatedb ;for ’locate’
(service
’(updatedb)
#:start (make-timer-constructor

;; Fire at midnight and noon everyday.
(calendar-event #:hours ’(0 12) #:minutes ’(0))
(command ’("/usr/bin/updatedb"

"--prunepaths=/tmp")))
#:stop (make-timer-destructor)
#:actions (list timer-trigger-action)))



(define file-system-/mnt/disk
(service

’(file-system-/mnt/disk)
#:start (lambda _

(mount "/dev/sdb2" "/mnt/disk" "ext4"))
#:stop (lambda _

(umount "/mnt/disk"))))



Blurring the line
between users and developers
to increase user autonomy.













After a fork() in a multithreaded program, the child
can safely call only async-signal-safe functions (see
signal-safety(7)) until such time as it calls execve(2).





(let loop ()
(handle-signal-port signal-port)
(loop))

(define (handle-signal-port port)
(let ((signal (consume-signalfd-siginfo port )))

(if (= SIGCHLD signal)
(match (waitpid WAIT_ANY WNOHANG)

((pid . status)
(put-message (current-process-monitor)

‘(handle-process-termination ,pid ,status))))
. . . )))



(let loop ()
(handle-signal-port signal-port)
(loop))

(define (handle-signal-port port)
(let ((signal (consume-signalfd-siginfo port )))
(if (= SIGCHLD signal)

(match (waitpid WAIT_ANY WNOHANG)
((pid . status)
(put-message (current-process-monitor)

‘(handle-process-termination ,pid ,status))))
. . . )))

reading won’t block!



(let next-client ()
(match (accept sock (logior SOCK_NONBLOCK SOCK_CLOEXEC))
((command-source . client-address)
(spawn-fiber
(lambda ()

;; Read and execute client commands concurrently.
(process-connection command-source)))))

(next-client))



(define* (terminate-process pid signal
#:key (grace-period 5))

;; Send signal to PID, or SIGKILL after grace period.
(let ((reply (make-channel)))

(put-message (current-process-monitor)
‘(await ,pid ,reply))

(catch-system-error (kill pid signal))

(match (get-message* reply grace-period #f)
(#f
;; Grace period is over, send SIGKILL.
(catch-system-error (kill pid SIGKILL))
(get-message reply))

(status
;; Terminated on time!
status))))



(define (service-controller channel)
(let loop ((status ’stopped)

(value #f)
...)

(match (get-message channel)
((’status reply) ;return the current status
(put-message reply status)
(loop status value ...))

((’start reply) ;start the service
...)

((’stop reply) ;stop it
...)

...)))





Concurrent sequential processes.



Sweat & tears.



(define (alice channel)
(let loop ()
(match (get-message channel)

(('say-hi-to-me reply)
(put-message reply 'hi!)))))

(define (bob friend)
(let ((reply (make-channel)))
(put-message friend
`(say-hi-to-me ,reply))

'bye-bye!))



(define (alice channel)
(let loop ()
(match (get-message channel)

(('say-hi-to-me reply)
(put-message reply 'hi!)))))

(define (bob friend)
(let ((reply (make-channel)))
(put-message friend
`(say-hi-to-me ,reply))

'bye-bye!))

Do not miss a rendez-vous.



“Hello, I wrote my own service
and now herd status hangs.”



thread apply all bt

... would be nice.







Uh-oh!



herd status





▶ 1.0.x bug-fix releases rolling
▶ Guix integration: replacing rottlog, mcron,

syslogd
▶ Fibers is solid! (and needs ♡)
▶ 7.4K lines of code!
▶ miss something from systemd? let’s hack!





https://gnu.org/s/shepherd

ludo@gnu.org | @civodul@toot.aquilenet.fr

https://gnu.org/s/shepherd


Copyright © 2025 Ludovic Courtès ludo@gnu.org.

Picture of Shepherd in Făgăras, Mountains, Romania, by “friend of Darwinek”, under CC-BY-SA 3.0,
https://commons.wikimedia.org/wiki/File:Rumunia 5806.jpg

Goblins + Spritely drawing by Spritely Institute,
https://spritely.institute/news/spritely-nlnet-grants-december-2023.html

Shepherd logo by Luis Felipe López Acevedo, under CC-BY-SA 4.0, https://git.savannah.gnu.org/cgit/shepherd/graphics.git.

This work is licensed under the Creative Commons Attribution-Share Alike 3.0 License. To view a copy of this license, visit
https://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San
Francisco, California, 94105, USA.

At your option, you may instead copy, distribute and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover
Texts, and no Back-Cover Texts. A copy of the license is available at https://www.gnu.org/licenses/gfdl.html.

The source of this document is available from https://git.sv.gnu.org/cgit/guix/maintenance.git.

https://commons.wikimedia.org/wiki/File:Rumunia_5806.jpg
https://spritely.institute/news/spritely-nlnet-grants-december-2023.html
https://git.savannah.gnu.org/cgit/shepherd/graphics.git
https://creativecommons.org/licenses/by-sa/3.0/
https://www.gnu.org/licenses/gfdl.html
https://git.sv.gnu.org/cgit/guix/maintenance.git

