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Project Oak

Research project aiming to make it possible 

for users to reason about how their data 

will be used by the server in ways 

verifiable by external reviewers

github.com/project-oak/oak

https://github.com/project-oak/oak
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Trusted Execution Environments

● Minimize the Trusted Computing Base (TCB)

● Use restricted environments and sandboxing

Remote Attestation

● Provide complete view of the workload

Transparency

● Open-source code

● Reproducible builds

● Verifiable Logs

Oak Building Blocks
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Restricted Environment

Firmware

● vBIOS + Bootloader

Restricted Kernel

● Minimal syscall interface

● Single process, single-threaded

● No unattested executable pages

Features

● Minimal TCB

● Written in Rust

● Attestation stays valid after boot

Trusted Execution Environment

Firmware

Restricted Kernel

Trusted Application
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EvidenceTrusted Execution Environment

Firmware

Restricted Kernel

Trusted Application

Device Identifier Composition Engine (DICE)

Software 
Measurement

Hardware 
Measurement

Software 
Measurement
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Goal

Use a Minimalistic Crypto Protocol

● Bind encrypted channel with remote attestation

● Don’t need PKI

● Don’t need certificates

● Minimize the amount of parsers

● Rust-only implementation
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Goal

Use a Minimalistic Crypto Protocol

● Bind encrypted channel with remote attestation

● Don’t need PKI

● Don’t need certificates

● Minimize the amount of parsers

● Rust-only implementation

www.noiseprotocol.org

http://www.noiseprotocol.org/
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● Framework for building simple crypto protocols

● Directly based on Diffie-Hellman key agreement

○ No certificates/certificate authorities

● Doesn’t restrict the wire format

○ Protocol provides bytes

● Authentication is optional

Noise Protocol
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● Noise patterns are based on the keys used in the handshake
○ Ephemeral keys
○ Static keys, e.g., long term identity key

■ Pre-shared with the other party
■ Exchanged during the handshake

● Formal proofs for confidentiality and authentication security 
guarantees

● Handshake pattern analysis tool: noiseexplorer.com

Noise Protocol: patterns

https://noiseexplorer.com/
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Noise Protocol
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Notation

● s - static key

● e - ephemeral key

● es, ee, … - Diffie-Hellman

Key agreement

● Rules for updating the local state

● Used to produce 2 symmetric keys 
(encryption/decryption)

e, es, ss
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● Bind attestation to the Noise handshake

○ Allows making it a separate step

● Use Noise without modifications

○ Retains security formal proofs

● Supports bidirectional attestation

● Supports multiple attestations

Noise Attestation



Confidential + Proprietary

Noise Attestation
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● Responder provides attestation evidence

● Evidence contains a binding key

● Binding is done by signing the handshake 

transcript h

● Includes a usage string
e

e, ee, sign(h)

Responder
Evidence
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Bidirectional Noise Attestation

R
es

po
nd

er

In
iti

at
or

● The same approach can be applied to 

attest both parties

e, ee, sign(h)

Responder
Evidence

sign(h)

Initiator
Evidence

e
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Multiple Attestations

● This approach also allows us to bind 

multiple attestations to the channel

○ By signing the handshake with 

individual binding keys

● This feature can be useful, if the system 

has multiple attestable components

1

2

3

N

sign1(h)

sign2(h)

sign3(h)

signN(h)
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TLS

● Standard well accepted solution
● Wide variety of features for 

authentication support

But:

● BoringSSL
○ Threading
○ Standard library for C++ 

bindings
○ 1.6M LOC 

■ but it’s not a fair comparison

● Small implementation:
○ 0.9K LOC Noise implementation
○ 2.5K SDK for attestation binding
○ Small subset of Rust Crypto

● Doesn’t need additional parsers
● Provides patterns that don’t 

require PKI

But:

● Custom solution

Noise
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● Use-case which minimizes the TCB

● Need for a minimalistic crypto protocol

● Use Noise Protocol Framework

● Bind end-to-end encrypted channel to remote attestation

Conclusion

Links

● Project Oak: github.com/project-oak/oak

● Noise Implementation: 

github.com/project-oak/oak/tree/main/oak_crypto/src/noise_handshake

● Attestation SDK: github.com/project-oak/oak/tree/main/oak_session

http://github.com/project-oak/oak
https://github.com/project-oak/oak/tree/main/oak_crypto/src/noise_handshake
https://github.com/project-oak/oak/tree/main/oak_session

