
Confidential + Proprietary

Attested Noise Protocol for 
Low-TCB Trusted Execution 
Environments

Ivan Petrov
ivanpetrov@google.com

Katsiaryna Naliuka
katsiaryna@google.com



Confidential + Proprietary

Agenda
1. Project Oak
2. Noise Protocol
3. Remote Attestation



Confidential + Proprietary

Project Oak

Research project aiming to make it possible 

for users to reason about how their data 

will be used by the server in ways 

verifiable by external reviewers

github.com/project-oak/oak

https://github.com/project-oak/oak


Confidential + Proprietary

Trusted Execution Environments

● Minimize the Trusted Computing Base (TCB)

● Use restricted environments and sandboxing

Remote Attestation

● Provide complete view of the workload

Transparency

● Open-source code

● Reproducible builds

● Verifiable Logs

Oak Building Blocks



Confidential + Proprietary

Restricted Environment

Firmware

● vBIOS + Bootloader

Restricted Kernel

● Minimal syscall interface

● Single process, single-threaded

● No unattested executable pages

Features

● Minimal TCB

● Written in Rust

● Attestation stays valid after boot

Trusted Execution Environment

Firmware

Restricted Kernel

Trusted Application



Confidential + Proprietary

EvidenceTrusted Execution Environment

Firmware

Restricted Kernel

Trusted Application

Device Identifier Composition Engine (DICE)

Software 
Measurement

Hardware 
Measurement

Software 
Measurement



Confidential + Proprietary

Goal

Use a Minimalistic Crypto Protocol

● Bind encrypted channel with remote attestation

● Don’t need PKI

● Don’t need certificates

● Minimize the amount of parsers

● Rust-only implementation



Confidential + Proprietary

Goal

Use a Minimalistic Crypto Protocol

● Bind encrypted channel with remote attestation

● Don’t need PKI

● Don’t need certificates

● Minimize the amount of parsers

● Rust-only implementation

www.noiseprotocol.org

http://www.noiseprotocol.org/


Confidential + Proprietary

● Framework for building simple crypto protocols

● Directly based on Diffie-Hellman key agreement

○ No certificates/certificate authorities

● Doesn’t restrict the wire format

○ Protocol provides bytes

● Authentication is optional

Noise Protocol



Confidential + Proprietary

● Noise patterns are based on the keys used in the handshake
○ Ephemeral keys
○ Static keys, e.g., long term identity key

■ Pre-shared with the other party
■ Exchanged during the handshake

● Formal proofs for confidentiality and authentication security 
guarantees

● Handshake pattern analysis tool: noiseexplorer.com

Noise Protocol: patterns

https://noiseexplorer.com/


Confidential + Proprietary

Noise Protocol

R
es

po
nd

er

In
iti

at
or

Notation

● s - static key

● e - ephemeral key

● es, ee, … - Diffie-Hellman

Key agreement

● Rules for updating the local state

● Used to produce 2 symmetric keys 
(encryption/decryption)

e, es, ss

e, ee, se

s

s



Confidential + Proprietary

Noise Protocol

R
es

po
nd

er

In
iti

at
or e, es, ss

e, ee, se

s

s

Notation

● s - static key

● e - ephemeral key

● es, ee, … - Diffie-Hellman

Key agreement

● Rules for updating the local state

● Used to produce 2 symmetric keys 
(encryption/decryption)



Confidential + Proprietary

Noise Protocol

R
es

po
nd

er

In
iti

at
or e, es, ss

e, ee, se

s

s

Notation

● s - static key

● e - ephemeral key

● es, ee, … - Diffie-Hellman

Key agreement

● Rules for updating the local state

● Used to produce 2 symmetric keys 
(encryption/decryption)



Confidential + Proprietary

● Bind attestation to the Noise handshake

○ Allows making it a separate step

● Use Noise without modifications

○ Retains security formal proofs

● Supports bidirectional attestation

● Supports multiple attestations

Noise Attestation



Confidential + Proprietary

Noise Attestation

R
es

po
nd

er

In
iti

at
or

● Responder provides attestation evidence

● Evidence contains a binding key

● Binding is done by signing the handshake 

transcript h

● Includes a usage string
e

e, ee, sign(h)

Responder
Evidence



Confidential + Proprietary

Bidirectional Noise Attestation

R
es

po
nd

er

In
iti

at
or

● The same approach can be applied to 

attest both parties

e, ee, sign(h)

Responder
Evidence

sign(h)

Initiator
Evidence

e



Confidential + Proprietary

Multiple Attestations

● This approach also allows us to bind 

multiple attestations to the channel

○ By signing the handshake with 

individual binding keys

● This feature can be useful, if the system 

has multiple attestable components

1

2

3

N

sign1(h)

sign2(h)

sign3(h)

signN(h)



Confidential + Proprietary

TLS

● Standard well accepted solution
● Wide variety of features for 

authentication support

But:

● BoringSSL
○ Threading
○ Standard library for C++ 

bindings
○ 1.6M LOC 

■ but it’s not a fair comparison

● Small implementation:
○ 0.9K LOC Noise implementation
○ 2.5K SDK for attestation binding
○ Small subset of Rust Crypto

● Doesn’t need additional parsers
● Provides patterns that don’t 

require PKI

But:

● Custom solution

Noise



Confidential + Proprietary

● Use-case which minimizes the TCB

● Need for a minimalistic crypto protocol

● Use Noise Protocol Framework

● Bind end-to-end encrypted channel to remote attestation

Conclusion

Links

● Project Oak: github.com/project-oak/oak

● Noise Implementation: 

github.com/project-oak/oak/tree/main/oak_crypto/src/noise_handshake

● Attestation SDK: github.com/project-oak/oak/tree/main/oak_session

http://github.com/project-oak/oak
https://github.com/project-oak/oak/tree/main/oak_crypto/src/noise_handshake
https://github.com/project-oak/oak/tree/main/oak_session

