
Enhancing KubeVirt

workload scheduling patterns
Simone Tiraboschi - Red Hat

FOSDEM 2025

Scheduling is the
process of matching
workload to Nodes.

By default, the
scheduler used is
kube-scheduler.

https://kubevirt.io/

Control Plane

Architecture

virt-apiserver

virt-controller

Worker Node 1 Worker Node 2

virt-handler

virt-launcher

VM

virt-handler

virt-launcher

VM
virt-launcher

VM

Pods!

K8s workload resources

■ Request: amount of a resource allowed to be
used, with a strong guarantee of availability

⚬ CPU (seconds/second), RAM (bytes)

⚬ Scheduler will not overcommit requests

■ Limit: max amount of a resource that can be
used, regardless of guarantees

⚬ scheduler ignores limits

■ Implications:

⚬ request < usage <= limit: resources
might be available

⚬ usage > limit: throttled (CPU) or killed
(memory)

Request and limit

https://kubevirt.io/

VM Resources
apiVersion: v1
kind: Pod
metadata:
 name: virt-launcher-testvm
spec:
 ...
 containers:
 ...
 name: compute
 resources:
 limits:
 devices.kubevirt.io/kvm: "1"
 requests:
 cpu: 400m
 devices.kubevirt.io/kvm: "1"
 ephemeral-storage: 50M
 memory: 2299Mi

POD Resources
apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: testvm
 ...
spec:
 ...
 template:
 spec:
 ...
 domain:
 cpu:
 cores: 1
 sockets: 4
 threads: 1
 memory:
 guest: 2Gi

In Kubernetes, one full core is 1000 of
CPU time
CPU is REQUESTed according to CPU
overcommit ratio
(10 by default):
spec:
 configuration:
 developerConfiguration:
 cpuAllocationRatio: 10

Memory overcommit is disabled by default (*):
The whole guest OS configured memory plus additional overhead for ancillary components is
required to avoid getting killed by OOM

* see: https://kubevirt.io/user-guide/compute/node_overcommit/#overcommit-guest-memory

We have also VMs with
Guaranteed QoS class:
requests = limits
No overcommit

K8s scheduling

How k8s scheduler works 1/2

It accounts only for (static!)
requests (by default actual guest
memory + overhead, 1/10 of VM
allocated CPU, not for limits nor
for actual utilization!)

Predicates

How k8s scheduler works 2/2
Priorities

https://kubevirt.io/

● Same kernel OS, isolated user
spaces

● (Ideally) lighter
● Fast startup
● Typically stateless, eventually with

data on persistent volumes that can
be attached

● Cannot be moved between nodes
with live-migration but they can be
quickly killed and restarted on a
different node

● Pods can be "easily scaled" to meet
dynamic application requirements

● Supposedly shorter life cycle

VMs PODs
● Each VM runs a separate OS, providing

stronger isolation
● Require more resources (CPU, RAM,

storage) due to running full OS per each
VM

● Slower startup time due to OS booting
● Usually stateful with data on local disks
● Can be moved between nodes with

live-migration with zero-downtime
● Scaling requires rebooting the VM with a

different configuration or hotplugging
resources: slower and intensive

● Potentially really long uptime

https://kubevirt.io/

VMs PODs
● nodeSelector

nodeSelector:

 performance: high

● nodeAffinity
affinity:

 nodeAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

 nodeSelectorTerms:

 - matchExpressions:

 - key: performance

 operator: In

 values:

 - high

● podAffinity/podAntiAffinity
podAntiAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

 - labelSelector:

 matchExpressions:

 - key: app

 operator: In

 values:

 - cache

● nodeSelector
nodeSelector:

 performance: high

● nodeAffinity
affinity:

 nodeAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

 nodeSelectorTerms:

 - matchExpressions:

 - key: performance

 operator: In

 values:

 - high

● podAffinity/podAntiAffinity
podAntiAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

 - labelSelector:

 matchExpressions:

 - key: app

 operator: In

 values:

 - cache

Scheduling hints

oVirt

VMware vCenter

Proxmox VE

User habits

https://kubevirt.io/

Initiate live migration on KubeVirt

apiVersion: kubevirt.io/v1

kind: VirtualMachineInstanceMigration

metadata:

 name: migration-job

 namespace: mynamespace

spec:

 vmiName: testvm You can only specify the name of a
VM within the VMIM namespace,
everything else will be up to the
scheduler…

It's a namespaced object

$ virtctl migrate <vmname>

https://kubevirt.io/

A bit of history…

It's not a new idea…

Motivation

■ As a cluster administrator:
⚬ Experienced admins are used to control where their critical workloads

are going to be moved to
■ Habits
■ Existing patterns/automation on/over previous VM management

solutions
■ Planned maintenance activities on nodes

⚬ Workload balancing solution doesn't always work as expected
■ I can anticipate load profile changes

⚬ Troubleshooting a node
⚬ Validating a new node migrating there a specific VM

■ As a VM owner:
⚬ I don't want to see my VM object getting amended by another

user/admin just for maintenance reasons

User stories

■ A user allowed to trigger a live-migration of a VM limiting its
admitted target to a subset of nodes

■ The target node that is explicitly required for the actual live
migration attempt should not influence future live
migrations or the placement in case the VM is restarted

■ The constraints directly added on the one-off migration can
only complement and limit constraints already defined on
the VM object (pure AND logic)

■ It's a one off migration attempt: it could successfully
complete or fail as it can already do today

Goals

https://kubevirt.io/

Proposed design

apiVersion: kubevirt.io/v1

kind: VirtualMachineInstanceMigration

metadata:

 name: migration-job

 namespace: mynamespace

spec:

 vmiName: testvm

 addedNodeSelector:

 accelerator: gpuenabled123

 kubernetes.io/hostname: "ip-172-20-114-199.example"

A node will be a valid target if it
will match all the node selector
constraints specified on the VM
AND additional node selectors
specified here

$ virtctl migrate <vmname> --addedNodeSelector key1=value1,key2=value2

https://kubevirt.io/

Criticisms and concerns
● K8s is the scheduler, the user should not have the control

○ OK, but…
● On K8s we cannot live migrate a pod to a named node

○ OK, but we cannot live migrate a pod at all
○ And without KubeVirt we neither have VMs: this is a VM specific problem so it should be

solved in KubeVirt
● We have other k8s native paradigms to "individually" address many if not all of the user stories

there (e.g. combinations of taints and tolerations, draining and/or cordoning/uncordoning nodes in
a specific sequence)
○ Correct but different tasks requires different strategies and they could be less obvious for less

trained user. We don't have a simply solution to rule them all
● Live migrations are resource expensive operations

○ The number of parallel live migrations is capped (by default 5) and we have a single migration
queue

○ Migrations are also used for critical infra operations (node drains, upgrades, hotplugging…)
○ "Namespace owners" are currently able to trigger live migrations, we fear that enhancing

migration capabilities we could end with users "abusing" that capability
○ But we can make this better…

KubeVirt RBAC model

K8s RBAC model is purely additive
(there are no "deny" rules).

KubeVirt RBAC model (KubeVirt 1.6)

It's not an API change.
Hardening: principle of least
privilege

kubectl create -n usernamespace rolebinding kvmigrate \
--clusterrole=kubevirt.io:migrate --user=user1 \
--user=user2 --group=group1

kubectl label --overwrite clusterrole \
kubevirt.io:migrate \
rbac.authorization.k8s.io/aggregate-to-admin=true

KubeVirt Razor: "If
something is useful for
Pods, we should not
implement it only for
VMs".

But this is a VM
specific topic…

https://kubevirt.io/

Alternatives: 1 - amend VM node affinity

1. set a (temporary?) nodeSelector/nodeAffinity on the VM
2. wait for it to be propagated to the VMI due to LiveUpdate

rollout strategy
3. trigger a live migration with existing APIs (no need for any code

change)
4. wait for the migration to complete
5. (eventually) remove the (temporary?) nodeSelector to let the

VM be freely migrate to any node in the future
● Imperative flow
● Error prone
● It has still to be somehow

"orchestrated"
● It can mess with

devops/IaC approaches

https://kubevirt.io/

Alternatives: 2 - configure a secondary
scheduler for VMs

● Yes, but…
○ The cluster admin should

deploy the custom
scheduler

○ Each individual VM should
be configured to be
scheduled by the secondary
scheduler and VM owners or
devops flows could revert it

● Still only about scheduling
according to static reservation (by
default 1/10 of allocated cores), not
actual utilization

● It's not going to continuous
rebalance the cluster according
to changes in the usage patterns

https://kubevirt.io/

Alternatives: 3 - use Kube Descheduler
for automatic workload rebalancing

● Now (nov '24) also
load-aware, before only
based on reservation

● Only about
descheduling: it will not
influence the scheduling
of the migration target
pod

● Likely the smartest option
on large clusters,
overkilling on small
environments (currently
it's only an optional
component)?

Load aware descheduling:
One more thing...

■ Novel (>= Kernel 4.20) canonical pressure metrics
for three major resources: memory, CPU, and IO.

■ Reported at node and cgroup slice level

■ It's not measuring usage but the actual
productivity losses caused by resource scarcity

■

Consume Pressure Stall Information (PSI) metrics

cAdvisor integration is still in
progress…

Questions?
Comments?

As users,
make your voice heard!!!

