
Arm Solutions at Lightspeed

1

Virtual Machine
Attestation on Arm

CCA
FOSDEM 2025

2

Realm boot and attestation on Arm CCA

3

Attestation on Arm CCA

4

Computing the Realm Token

● RIM: Realm Initial Measurement, a hash
of the state of the VM at reset

● REM: Realm Extensible Measurements,
four hashes for runtime measurements

5

Computing the RIM
As a Reference Value provider, how do I compute the RIM?

➔ Easy: run it once and write down the RIM.
➔ Don’t own the machine? Do it offline.

Use ✨cca-realm-measurements✨ command-line tool + rust library

$ cca-realm-measurements <host-config> <images> qemu <arguments>
RIM: 62072e353a762a55…

Problem: there is no standard Arm VM
➔ Define canonical initialization order
➔ Specify each virtual platform, generate the firmware tables

6

Computing the RIM dynamically
● Problem: poor scalability NRIMs = NVMM versions × NvCPUs × NRAM_sizes × Nimages × Nopt A × Nopt B × ...
➔ Compute the Reference Values dynamically

7

Conclusion
● At least three options to compute a Realm token
● PoC implementation for offline and event_log: ✨cca-realm-measurements✨
● Needs input from users. What to improve:

– More VMMs
– Standardize:

● VM formats?
● Attestation protocol for sending token + log
● Event log format (new events types for TCG TPM2)

– Interoperability with other projects (eg. IGVM)

Arm Solutions at Lightspeed

8

Extras

9

Links and references
● https://github.com/veraison/cca-realm-measurements

● Learn the architecture - Arm Confidential Compute Architecture software stack

● Build and run the CCA stack on QEMU

● TCG PC Client Specific Platform Firmware Profile Specification Event log specification

● QEMU PATCH v3: Run Arm CCA VMs with KVM RIM event log proof of concept

● IGVM describes load order to the VMM

https://github.com/veraison/cca-realm-measurements
https://developer.arm.com/documentation/den0127/0200/
https://linaro.atlassian.net/wiki/spaces/QEMU/pages/29051027459/Building+an+RME+stack+for+QEMU
https://trustedcomputinggroup.org/resource/pc-client-specific-platform-firmware-profile-specification/
https://lore.kernel.org/all/20241125195626.856992-2-jean-philippe@linaro.org/
https://github.com/microsoft/igvm/tree/main/igvm_defs

10

Pre-calculating the RIM
Requirements:

● Host hardware capabilities

● Hypervisor (implementation choices eg. page table allocation order)

● VMM capabilities and enabled features

● Firmware/kernel/initrd images, where and in which order are they loaded

● Initial vCPU registers (entry point, device tree address)

● Firmware tables (= machine description) loaded into the VM

11

Measuring the firmware tables
Do we need to measure the firmware tables? Not necessarily, but

● Untrusted host provides the DTB/ACPI tables and could for example:
– Add extra nodes to exploit vulnerable drivers
– Add pointers to MMIO regions under host control, fake initrd
– Change kernel parameters to disable hardening
– Introduce out of bounds value to confuse a lenient parser

● To validate the FW tables at runtime:
– All components (FW, OS) that parse the tables must now have a strict validator
– Upheaval of the threat model has a significant maintenance and review cost. Each

DT and ACPI change must now anticipate this new threat.

12

Realm Extensible Measurements
● Four registers
● Realm software extends them (REM + hash → REM)
● Need a log as well

