
Zephyr RTOS
Roasting
Party!
Benjamin Cabé

FOSDEM 2025

$whoami (and disclaimers ☺)

•Nearly 20 years doing open source & IoT

•Developer Advocate for the Zephyr Project

•Not an embedded developer “veteran”

•Also a baker, potter, photographer

Zephyr RTOS in a nutshell

Open source (circa 2015, Apache License)

140+ maintainers

2,500+ contributors

109,478 commits (and counting)

Scales from very small MCUs to complex SoCs

Zephyr is…

•A real-time operating system

•An über-HAL

•An embedded application framework

•A connectivity framework

•A development environment

•…

Some products
running Zephyr

RTOS

• Oticon hearing aids
• Framework laptop (embedded controller)
• Samsung Galaxy Ring
• Gardena radio gateway
• …

Why a roasting party?

• I (we?) love Zephyr, but it’s not perfect

• Just like any big open source projects, Zephyr can have
some pain points

• I’ll try to be as transparent as possible about the issues, but
try to show you the light at the end of the tunnel ☺

Common
critics

• Zephyr is too big

• Zephyr is too slow

• YAHAL?

• Devicetree is hard / doesn’t
make sense for embedded

• Why are you forcing me to
use west?

Zephyr is too big

Initial setup is actually *very* easy

1. Initialize a local workspace for

developing against upstream Zephyr

west init

2. Fetch all modules, install SDK

west update && west sdk install

3. Profit!

west build -b <my_board> samples/hello_world

~/zephyrproject $ du * -sh

14M bootloader

5.2G modules

20M tools

1.1G zephyr

~/zephyrproject $ du modules/hal/* -sh

42M modules/hal/adi

1.3M modules/hal/altera

30M modules/hal/ambiq

87M modules/hal/atmel

...

264M modules/hal/espressif

3.4M modules/hal/xtensa

~/zephyr-sdk-0.17.0 $ du * -sh

250M aarch64-zephyr-elf

646M arc-zephyr-elf

291M arc64-zephyr-elf

1.1G arm-zephyr-eabi

...

183M xtensa-sample_controller_zephyr-elf

~/zephyr-sdk-0.17.0 $ du . -sh

8.2G .

Why do I need 15 GB of %&$@
to blink an LED?
• It’s convenient when you work on Zephyr itself, less so

when you just want to build an app on top of it

•Look into enabling only modules you actually need (e.g.
HAL)
• “allow-list” property in West manifest

• https://github.com/zephyrproject-rtos/example-application

•west sdk to the rescue for provisioning only the SDK(s)
you need

https://github.com/zephyrproject-rtos/example-application

Zephyr is bloated

Real-time performance
(speed)

Memory footprint (code
size)

Developer Experience

Security

Hardware abstraction

Configurability

Power efficiency

Connectivity

Real-time performance
(speed)

Memory footprint (code
size)

Developer Experience

Security

Hardware abstraction

Configurability

Power efficiency

Connectivity

Real-time performance
(speed)

Memory footprint (code
size)

Developer Experience

Security

Hardware abstraction

Configurability

Power efficiency

Connectivity

Real-time performance
(speed)

Memory footprint (code
size)

Developer Experience

Security

Hardware abstraction

Configurability

Power efficiency

Connectivity

Zephyr’s default options are a starting point

•Hardware stack protection enabled

•Optimize for size (not speed)

•A few on-by-default defensive programming patterns

Take benchmarks with a grain of salt

•Out-of-the-box Zephyr is NOT fine tuned

•Latency/performance is obviously important in an
embedded real-time context but…

•… your actual application / use case is what should drive
your RTOS selection process.

See tests/benchmarks/thread_metric in the
Zephyr tree

“Devicetree for
embedded, seriously?”

Devicetree in Zephyr

•Describe hardware (duh!)

•Provide hardware initial configuration

•Compile-time only!

&i2c1 {

pinctrl-0 = <&i2c1_scl_pb8 &i2c1_sda_pb9>;

pinctrl-names = "default";

clock-frequency = <I2C_BITRATE_FAST>;

status = "okay";

lsm6dsl@6a {

compatible = "st,lsm6dsl";

reg = <0x06a >;

};

hts221@5f {

compatible = "st,hts221";

reg = <0x5f >;

};

// …

};

Devicetree in Zephyr

display_dev = DEVICE_DT_GET(DT_CHOSEN(zephyr_display));

Devicetree macro hell (a.k.a macrobatics)

•Theory
static const struct gpio_dt_spec led =

GPIO_DT_SPEC_GET(LED0_NODE, gpios);

•Practice
error: '__device_dts_ord_12' undeclared here

(not in a function); did you mean

'__device_dts_ord_13'?

When it fails

•Compiler error
• You’re using a Devicetree macro that ends up not existing due

to a node missing or being disabled in your Devicetree.

•Linker error
• Devicetree probably OK, but driver not actually enabled in

Kconfig.

Troubleshooting Devicetree
docs.zephyrproject.org/build/dts/troubleshooting.html

http://docs.zephyrproject.org/build/dts/troubleshooting.html

I don’t want to use west

west, a.k.a Zephyr’s Swiss Army knife

•Module Management
• Simplifies versioning and integration of various modules/libraries in

the build system

•Build
• Flash / Debug
• Extensible CLI

• e.g. custom commands for specific board
• Static code analysis, RAM/ROM reports, SBOM generation

It is optional!

•You can always use CMake/Ninja (or make)
… it’s just going to be more painful with little benefits

See docs.zephyrproject.org/latest/develop/west/without-west.html

https://docs.zephyrproject.org/latest/develop/west/without-west.html

My board/sensor is not
supported! … open source FTW

Anything else?

Thanks!
benjamin@zephyrproject.org

zephyrproject.org

Visit the Zephyr table
in Building K! (Level 1)

mailto:benjamin@zephyrproject.org

	Slide 1: Zephyr RTOS Roasting Party!
	Slide 2: $whoami (and disclaimers )
	Slide 3: Zephyr RTOS in a nutshell
	Slide 4: Zephyr is…
	Slide 5: Some products running Zephyr RTOS
	Slide 6: Why a roasting party?
	Slide 7: Common critics
	Slide 8: Zephyr is too big
	Slide 9: Initial setup is actually *very* easy
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Why do I need 15 GB of %&$@ to blink an LED?
	Slide 15: Zephyr is bloated
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Zephyr’s default options are a starting point
	Slide 21: Take benchmarks with a grain of salt
	Slide 22: “Devicetree for embedded, seriously?”
	Slide 23: Devicetree in Zephyr
	Slide 24
	Slide 25: Devicetree in Zephyr
	Slide 26
	Slide 27
	Slide 29: Devicetree macro hell (a.k.a macrobatics)
	Slide 30: When it fails
	Slide 31: I don’t want to use west
	Slide 32: west, a.k.a Zephyr’s Swiss Army knife
	Slide 33: It is optional!
	Slide 34: My board/sensor is not supported!
	Slide 35: Anything else?
	Slide 36: Thanks!

