Zephyr RTOS
Roasting
Party!

Benjamin Cabé

FOSDEM 2025

$whoami (and disclaimers ©)

* Nearly 20 years doing open source & loT

* Developer Advocate for the Zephyr Project
* Not an embedded developer “veteran”

* Also a baker, potter, photographer

Zephyr RTOS in a nutshell

Open source (circa 2015, Apache License)
140+ maintainers

2,500+ contributors
109,478 commits (and counting)
Scales from very small MCUs to complex SoCs

Zephyr is...

* A real-time operating system

* An Uber-HAL

* An embedded application framework
* A connectivity framework

* A development environment

SOme o rOdUCtS * Oticon hearing ouds D

. Franfeworh laptop (embedded controller)

running zephyr "+ Samsung Galaxy Ring
' RTOS * Gardena radio gateway

Why a roasting party?

| (we?) love Zephyr, but it’s not perfect

* Just like any big open source projects, Zephyr can have
some pdain points

*I'll try to be as transparent as possible about the issues, but
try to show you the light at the end of the tunnel ©

Common
critics

e Zephyr is too big
e Zephyr is too slow

 YAHAL?

e Devicetree is hard / doesn’t
make sense for embedded

 Why are you forcing me to
use west?

Zephyr is too big

4

Initial setup is actually *very* easy

1. Initialize a local workspace for
developing against upstream Zephyr

west 1init

2. Fetch all modules, install SDK
west update && west sdk install

3. Profit!

west build -b <my board> samples/hello world

~/zephyrproject $ du
14M bootloader
5.2G modules

2 0M tools

1.1G zephyr

* -sh

~/zephyrproject $ du modules/hal/* -sh

42M modules/hal/adi
1.3M modules/hal/altera
30M modules/hal/ambiqg
87M modules/hal/atmel

264M modules/hal/espressif
3.4M modules/hal/xtensa

~/zephyr-sdk-0.17.0 $ du * -sh

250M
64 0oM
291M
1.1G

183M

aarchod-zephyr-elf
arc—-zephyr-eltf
arcod-zephyr-elf

arm—-zephyr-eabil

xtensa-sample controller zephyr-elf

~/zephyr-sdk-0.17.0 $ du . -sh

8.2G

Why do | need 15 GB of %&$@
to blink an LED?

* It's convenient when you work on Zephuyr itself, less so
when you just want to build an app on top of it

* Look into enabling only modules you actually need (e.g.
HAL)

¢ “311ow-11st” property in West manifest
* https://github.com/zephyrproject-rtos/example-application

*west sdk to the rescue for provisioning only the SDK(s)
you need

https://github.com/zephyrproject-rtos/example-application

Zephyr is bloated @

Real-time performance

(speed)
Connectivity Memory foptprlnt (code
size)
Power efficiency Developer Experience
Configurability Security

Hardware abstraction

Real-time performance

(speed)
Connectivity Memory fqotprmt (code
size)
Power efficiency Developer Experience
Configurability Security

Hardware abstraction

Real-time performance

(speed)
Connectivity Memory fqotprmt (code
size)
Power efficiency Developer Experience
Configurability Security

Hardware abstraction

Real-time performance

(speed)
Connectivity .= el Memory foptprmt (code
----------- size)
Power efficiency { Developer Experience

Configurability Security

Hardware abstraction

Zephyr's default options are a starting point

* Hardware stack protection enabled
* Optimize for size (not speed)

* A few on-by-default defensive programming patterns

Take benchmarks with a grain of salt

* OQut-of-the-box Zephyr is NOT fine tuned

 Latency/performance is obviously important in an
embedded real-time context but...

e ... your actual application / use case is what should drive
your RTOS selection process.

See tests/benchmarks/thread metric inthe
Zephyr tree

“Devicetree for
embedded, seriously?”

Devicetree in Zephyr

* Describe hardware (duh!)
* Provide hardware initial configuration

* Compile-time only!

&i2cl {
pinctrl-0 = <&i2cl scl pb8 &i2cl sda pb9%>;

pinctrl-names = '"default";
clock-frequency = <I2C BITRATE FAST>;
status = "okay";

lsmé6dsl@6a ({

compatible = "st,lsmédsl";
reg = <0x06a >;

};

hts221@5f {

compatible = "st, hts221";
reg = <0x5f >;
};

// ..
};

Devicetree in Zephyr

[Devicelree sources]7
4>[Eenarate-d C header]—>[devicetree.h]
[Deavicetree bindings]7 i

Zephyr and application
source code files

display dev = DEVICE DT GET (DT CHOSEN (zephyr display));

Devicetree macro hell (a.k.a macrobatics)

* Theory

statlic const struct gpio dt spec led =
GPIO DT SPEC GET (LEDO NODE, gpi1ios);

error: ' device dts ord 12' undeclared here

(not 1in a function);_did_you mean
' device dts ord 13'?

When it fails

- Compiler error

* You're using a Devicetree macro that ends up not existing due
to a node missing or being disabled in your Devicetree.

e Linker error

* Devicetree probably OK, but driver not actually enabled in
Kconfig.

Troubleshooting Devicetree
docs.zephyrproject.org/build/dts/troubleshooting.html

http://docs.zephyrproject.org/build/dts/troubleshooting.html

| don’t want to use west

west, a.k.a Zephyr's Swiss Army knife

 Simplifies versioning and integration of various modules/libraries in
the build system

 Build
* Flash /| Debug
 Extensible CLI

* e.g. custom commands for specific board
* Static code analysis, RAM/ROM reports, SBOM generation

It is optional!

* You can always use CMake/Ninja (or make)
.. it’s just going to be more painful with little benefits &)

See docs.zephyrproject.org/latest/develop/west/without-west.html

https://docs.zephyrproject.org/latest/develop/west/without-west.html

My board/sensor is not
supported! ... open source FTW

&,

Anything else?

Visit the Zephyr table

in Building K! (Level 1)

Thanhs!

benjamin@zephyrproject.org

zephyrproject.org

mailto:benjamin@zephyrproject.org

	Slide 1: Zephyr RTOS Roasting Party!
	Slide 2: $whoami (and disclaimers )
	Slide 3: Zephyr RTOS in a nutshell
	Slide 4: Zephyr is…
	Slide 5: Some products running Zephyr RTOS
	Slide 6: Why a roasting party?
	Slide 7: Common critics
	Slide 8: Zephyr is too big
	Slide 9: Initial setup is actually *very* easy
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Why do I need 15 GB of %&$@ to blink an LED?
	Slide 15: Zephyr is bloated
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Zephyr’s default options are a starting point
	Slide 21: Take benchmarks with a grain of salt
	Slide 22: “Devicetree for embedded, seriously?”
	Slide 23: Devicetree in Zephyr
	Slide 24
	Slide 25: Devicetree in Zephyr
	Slide 26
	Slide 27
	Slide 29: Devicetree macro hell (a.k.a macrobatics)
	Slide 30: When it fails
	Slide 31: I don’t want to use west
	Slide 32: west, a.k.a Zephyr’s Swiss Army knife
	Slide 33: It is optional!
	Slide 34: My board/sensor is not supported!
	Slide 35: Anything else?
	Slide 36: Thanks!

