
Arm Solutions at Lightspeed

1

Arm Solutions at Lightspeed

Supporting
Confidential

Computing on Arm
With Open Source Software

Arm Solutions at Lightspeed

2

CCA End-to-End Scenario?

The content herein is a join effort between Linaro, Arm and the Linaro Data Center Group
members

Goal → Support All Elements of a Confidential Computing Solution on Arm platforms

All the links to the projects and demonstration software are on the last slide

Arm Solutions at Lightspeed

3

Arm Solutions at Lightspeed

4

CCA-Aware Reference Software Stack

VMM

QEMU (Virt and SBSA) Real Hardware

Trusted Firmware A (Monitor)

TF-RMM

FVP Model

EDK2

VMMVMM*

VMVM

Realm(s) Non-Secure (normal)

Linux/KVM

Linux

Kata agent

Kubernetes

Attestation Agent*

ContainerContainer

VMM:

Attestation Agents:

Key Broker Service

Attestation tools

QEMU
Kvmtool

Cloud Hypervisor

Arm Solutions at Lightspeed

5

Verifier
Built with project Veraison

“Provides software components that can be used to build an Attestation Verification service”

Verifier can run in a local infrastructure

Linaro provides a cloud based instance publicly available
→ http://veraison.test.linaro.org:8443/.well-known/veraison/verification
→ Pre-populated with an attestation token that matches the TF-A

http://veraison.test.linaro.org:8443/.well-known/veraison/verification

Arm Solutions at Lightspeed

6

Key Broker Demonstration
Part of project Veraison

Built to exercise an end-to-end confidential computing scenario

Key broker server:
→ Runs in a local infrastructure
→ Pre-configured to use the public Linaro verifier
→ Can be configured to use a local verifier instance

Key broker application:
→ Already included in the rootfs of the CCA aware reference software stack
→ Can run without the stack with using a built-in RIM

Arm Solutions at Lightspeed

7

Noteworthy Tools
CCA workload attestation:

→ Proof of concept for initial interaction with a verifier
→ Integrated to the reference stack rootfs
→ Useful to output the CCA attestation token to the command line
→ Enacts the “passport” model of RFC9334

CCA realm measurement tool:
→ Part of project Veraison
→ Computes the RIM and REM of a secure VM

RIM: Realm Initial Measurement
REM: Realm Extended Measurement

https://www.ietf.org/rfc/rfc9334.html

Arm Solutions at Lightspeed

8

CCA End-to-End Scenario?
CCA aware reference software stack

→ Runs on QEMU (Virt Machine + SBSA) and FVP
→ Entirely composed of open source components
→ User space applications for appraisal of evidence

A Verifier running in the cloud
→ Based on project Veraison
→ Publicly available for test purposes

Key Broker
→ Runs on your local machine
→ Integrated with the stack and verifier

All Open
Source

No Black Boxes

No Magic
Binary Blobs

Arm Solutions at Lightspeed

9

Putting It All Together

1) Start a Realm VM
2) Start the key broker service
3) Ask for a secret payload

1
2

3

Arm Solutions at Lightspeed

10

Putting It All Together - Step 1
Acquire, build and run the CCA reference stack

→ All instructions are here
 Once in a Realm VM, extract the CCA attestation token and look for the RIM:

https://tinyurl.com/2anaptkn

Arm Solutions at Lightspeed

11

Putting It All Together - Step 2

Acquire and build the key broker server
→ All instructions are here

 Start the key broker service locally with the Realm’s RIM:

https://github.com/veraison/keybroker-demo

Arm Solutions at Lightspeed

12

Putting It All Together - Step 3

Back in the Realm VM, ask for secret payload “skywalker” from the key broker:

Arm Solutions at Lightspeed

13

Understanding What Happened

3. Key broker App retrieves the CCA attestation
token from “/sys/kernel/config/tsm”
4. The attestation token and a wrapping key are
sent out to the Key Broker
5. The attestation token is forwarded to the
verifier
6. The verifier verifies the platform token against
appraisal policies
7. The verifier sends an attestation results
8. The key broker verifies the Realm token that
contains the RIM against appraisal policies
9. Payload “skywalker” is encrypted with the
wrapping key and sent back to the requester
10. The payload is decrypted and the content
revealed

3
4

5

6

7

8

10

9

Arm Solutions at Lightspeed

14

Links
CCA-Aware reference stack: https://tinyurl.com/2anaptkn
Project Veraison: https://github.com/veraison
Remote Attestation Procedures (RATS) Architecture: https://www.ietf.org/rfc/rfc9334.html
Key Broker Demonstration: https://github.com/veraison/keybroker-demo
CCA workload attestation PoC: https://tinyurl.com/25oba4cq
CCA realm measurement tool: https://github.com/veraison/cca-realm-measurements

https://tinyurl.com/2anaptkn
https://github.com/veraison
https://www.ietf.org/rfc/rfc9334.html
https://github.com/veraison/keybroker-demo
https://tinyurl.com/25oba4cq
https://github.com/veraison/cca-realm-measurements

Arm Solutions at Lightspeed

15

Too Much Information, Too Little Time

Questions?

