e —
g .'..IF. ﬁ".'\: _,!/I 4
_f})w!-ulgg-:.ll,-

S M or:.
L\ I ":!, 3 14,

About me

 Technical Director @ l0T.bzh

 Previous/current lives :

* Uboot + RTOSes (incl. VxWorks)

e Cloud and embedded software developer
(WindRiver, Linux)

* Linux since 2002 (openSUSE, Kubuntu, Fedora, ...)

e sebastien@iot.bzh

* https://www.linkedin.com/in/sebastien-douheret/

I\OT@BZH Lessons learned from integrating SBOM in a supply chain Q FOSDEM'25 2

mailto:sebastien@iot.bzh
https://www.linkedin.com/in/sebastien-douheret/

loT.bzh at a glance

Our location
Brittany

Open Source contributions Some partners
X &
= e TIZEN.
Phiinsuncg
i . {()) 1IDEMIA
T — i pen source, Samsung TVs N——
~ s Intel Vannes (2011-2015)
;i;. EEA m - RENESAS & SAFRAN
= SRR AUTOM"]TIVE 1 Sl
=) STELL/\NTIS
European CyberSecurity Open Source OS for Toyota, Suzuki, Subaru el)
Organisation: loT.bzh: +50% technical contributions 2016-2020 ﬁ TotalEnergies
Cyber Valleys mapping
THALES
THE
Our product _ L JLINUX
30 years of embedded OS redpesk®: Saa$S platform (or On Prem) Linux for PI%U g
wind River (1990) - Intel (2009) - [0T.bzh (2015) industrial loT (auto, mil-aero, energy...)
VxWorks® ‘ ﬁ
@ (1® 4
WIND RIVER BENETEAU

redpesk®

IOT&) BZH Lessons learned from integrating SBOM in a supply chain G FOSDEM'25 3

What is SBOM and Why ?

Definition :

“Is a formal, machine-readable inventory of software

components, and their hierarchical relationships”

Why SBOM is crucial :

|IOT.& BZH

Enhanced Cyber security — help to identify vulnerabilities

Transparency and Risk Management — clear view of all components in a software product.
Efficient Vulnerability Response - quickly identify affected components.

Supply Chain Security - helping stakeholders identify potential risks.

Compliance and regulatory adherence - legal obligations arising from European directives
(NIS 2 | ANSSI and Cyber Resilience Act).

Lessons learned from integrating SBOM in a supply chain G FOSDEM'25 4

C.R. A. CYBER RESILIENCE gA\eal

* Legacy date — 2022/01/01 :
Products released before this date are excluded from EU CRA, if they
didn’t undergo any substantial modifications after this date

e Effective date — 2024/12/10: The EU CRA enters into force

* Notification date — 2026/09/11 (21 months after effective date):
Manufactures must notify the relevant authorities about exploitable and
severe vulnerabilities

* Penalty date — 2027/12/11 (36 months after effective date):
The EU may charge manufacturers with penalties for violations of the EU
CRA

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=0J:L_202402847

IOT\cﬁ) BZH Lessons learned from integrating SBOM in a supply chain G FOSDEM'25 5

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L_202402847

Types of

BOMs

Acronym Full name Description

CBOM Cryptography Describe cryptographic assets and their dependencies in software and systems
Bill of Materials

SAASBOM Software-as-a-Service Offers a list of endpoints, data flows, classifications, and services involved in cloud-
Bill of Materials native applications

ML-BOM Machine Learning Documents Al technologies within a product, including datasets, training
Bill of Materials methodologies, and Al framework configurations

HBOM Hardware Captures detailed inventories of physical hardware components and associated
Bill of Materials firmware in a product

mBOM Manufacturing Lists all assemblies, parts, and materials required to manufacture a finished

Bill of Materials

product

Reports

VEX Vulnerabily Exploitability A standard format for communicating the status of vulnerabilities in software
eXchange component
VDR Vulnerabily Disclosure Detailed reports used to communicate information about discovered vulnerabilities

to relevant parties

non exhaustive list ...

Most of them handled by CycloneDx

|IOT.& BZH

Lessons learned from integrating SBOM in a supply chain

https:/Icyclonedx.org/capabilities/sbom/

{¥ FOSDEM'25

https://cyclonedx.org/capabilities/sbom/

Popular SBOM Formats
L2 SPDX

Linux Foundation

* Initially designed to track software
licenses

* Evolved to include file integrity and
vulnerability tracking

* Versions <= 2.x : monolithic approach
Versions >= 3.x : more flexible

* Became an official ISO/IEC standard in
August 2021

(o) CycloneDX

OWASP Foundation

Initially focused on tracking software
vulnerabilities (security)

Adopts a lightweight, extension-based
approach

Widely used across all sectors

Support complex multi-modal systems
description

Competition between 2 BOMs formats but no “better” format between these two

IOT\tﬁ) BZH Lessons learned from integrating SBOM in a supply chain Q FOSDEM'25

SBOM and VEX

* VEX - Vulnerability Exploitability eXchange

IS the exploitability status of a component in
relation to one or more vulnerabilities

* Importance of BOMs combination :

« SBOM : packages identification, version, licensing

 VEX / CVE : huge importance to be compliant with
directives like NIS2, CRA, ...

IOT\cﬁ) BZH Lessons learned from integrating SBOM in a supply chain G FOSDEM'25

redpesk® embedded software for loT

0 redpesk OS ﬂ redpesk Factory redpesk

[TS version based on RHEL devel version e Ease deve|opment and integration

based on CentOS Stream workflows in cross environment
* Based on RPM packages « Cl/CD : automatic rebuild, testing
* BSP (Board Support Package) allowing to support « Based on Koji (Fedora build system) with

various embedded boards extensions to support cross-building and
« Enriched by pservices & security frameworks emulate build

Sources available at Community edition
https://github.com/redpesk https://community-app.redpesk.bzh

DD:> Such a complex supply chain needs to provide SBOM+VEX reports

IOT\AQ) BZH Lessons learned from integrating SBOM in a supply chain G FOSDEM'25 9

https://github.com/redpesk
https://community-app.redpesk.bzh/

redpesk® factory based on proven tools

+ Authentication

-} LDAP (i

E ':J deX gl |

. ‘() GitHub %' GitLab

redpe&Sk I______________________:::::::::::::

\ v ' Cl/CD !

S e : o 1

Linux mainline o ; >~ -\ Z’ CB o\

- - // \\ [} 1 % :

” , u ® I Bullder ,

6 %’ & L redpesk®factory ﬂ (M reeseos 1 BT

1 | / \ T T T T T s e \

o | @l | Backend/Frontend/Perm:

Linux BSP © . : : .

Lo Koji build | A | ade NGULAR

vocto: L omem || e o i O

- =i RPMs + Images g | : oo !

W L&y L--» D G ¥ :

@tep L resting | e =

Do | - pmoTToommTommmommmmoeeey

TR R R L CI/CD P, SBOM / VXE : lﬁ Storage 5

& App Framework B _: |‘ Rackable Test Module | - : fgorgejo :

sz G&lb ﬂ __EO_TL&;_BEH// ~ 7 E PostgreSQL w CIEU_H:‘] E
: Testing G EMU {1 OTA 1 Infra sk X PROXMOX
: ! E o E E HAPROXY N ¢ :
: (W8 MENDER!: @ @ & irevald
E N LAVA ! :... v ANSIBLE € dnsmasq E

Prometheus

IOT\tﬁ) BZH Lessons learned from integrating SBOM in a supply chain Q FOSDEM'25

10

redpesk® factory WebUI & CLI

« redpesk

A pashboard

Projects

i Applications
Images

&) Tests

= Teams

5 Configuration

Created b

Dashboard
Quick actions
+ PROJECT ‘ + APP
My bookmarks
Projects

M INDUSTRIAL DEMO PROJECT

A DEMO HELLOWORLD

Applications

M HELLOWORLD BINDING

loT.bzh Company 2019-2022

My last builds

Bulld]Rackage Status | Started At Project Name

I Name
helloworld- Nov 8, 2022,

22719 |binding done | 8:51:56 AM Demo Helloworld
helloworld- Sep 20,2022,

13101 |binding done |3:14:51 PM Demo Helloworld
helloworld- Sep 8,202, New-project-seb-

10503 |binding done [11:50:26 AM community
helloworld- Sep8,2022, New-project-seb-

10573 |binding failed [10:35:55 AM ‘community
helloworld- Sep1,2022, New-project-seb-

9106 |binding done |5:19:22PM community
helloworld- Sep 1, 2022,

9080 |binding failed | 4:47:18 PM Demo Helloworld
helloworld- Sep1,2022, New-project-seb-

9075 |binding failed [4:32:11PM community

My latest tests

Testld |Application Name | Started At Status
32 helloworld-binding Nov 8, 2022, 1:23:16 PM success
29 helloworld-binding Sep 20,2022,3:20:14PM | success
1z helloworld-binding Sep 2,2022, 4:31:07 PM

My charts

Builds
7 builds in 10 projects

Done
Failed
Cancelled

Tests
3 tests in 10 projects

ways to interact with the factory :

Lessons learned from integrating SBOM in a supply chain

> Web Ul

- - bash — Konsole <2>

seb-laptop: ~$ rpcli help

Command ne Interface *

rp-cli is a command line tool to interact with the Redpesk platform.
For the moment, it only interacts with the Redpesk backend.

Setting of global options is driven either by flags inside the command line, by environment v
or using a config file knowning that the following priority order is used:

1. Use flag value (for example --serverurl https://community-app.redpesk.bzh)

2. Else use exported environment variable 'RP_xxx'. The environment variable named is formed
prefix "RP" followed by the flag name, in uppercase.

For example, the "--serverurl" flag corresponds to the "RP_SERVERURL" environment variable

3. Else use the ".json" configuration file, storing the wanted values for the flag.
For example: {"serverurl "https://community-app.redpesk.bzh"}

[The default locations for the configuration file are "$HOME/.redpesk/rp-cli/rp-cli-config.jso
g.json".

g
This location can be changed either by using the "--config" flag or by exporting the RP_CONFI

In order to communicate with a Redpesk backend, an access token is needed. If none is set, th

interactively when rp-cli is used for the first time.

ITo learn more about access token in rp-cli, please visit:
https://docs.redpesk.bzh/docs/en/master/getting_started/rp_cli/2_configuration.html

Copyright (0-2021 IoT.bzh - Redpesk®
Authors:
Armand Bénéteau <armand@iot.bzh>

Sébastien Douheret <sebastien@iot.bzh>

Usage:
rp-cli [command]

Examples:
Get server version
rp-cli misc version

Get help for 'projects' sub-command
rp-cli projects --help

[Available Commands:

> Command Line (rp-cli)
> REST API and WebSocket (optional)

{¥ FOSDEM'25

11

Integration challenges - SBOM

* identify where and how to collect relevent data
= don’t re-invent the wheel but extract/capitalize on
existing information (RPM, image manifest file,...)

* Merge or integrate SBOMs and artifacts generated externaly
= [rust] cargo sbom’, [go] syft / cyclonedx-go’, [nodejs] npm sbom, ...

* adjustement needed to support all corner cases
= concrete example: on-going Fedora license SPDX ID migration

I\QT@ BZH Lessons learned from integrating SBOM in a supply chain Q FOSDEM'25 12

Integration challenges - VEX

* redpesk baseOS : relies on RedHat security database (CVE) but
with additional patches

= support of cross-compilation or fixes due to embedded constraints

= Data Accuracy and Reliability : Importance of regular updates

uui> setup specific database and micro-service to handle this situation

|OT\4€) BZH Lessons learned from integrating SBOM in a supply chain G FOSDEM'25 13

BOM files generation that’s good but not enough !

No guarantee whether a package has been tampered or not by a malicious user
nmm SLSA provenance attestations + in-toto

‘% Compromise ‘% Compromise ‘% Compromise ‘%

source control build platform package repository
(B) (D) (G)

Submit r Modify n Bypass n Use bad
bad code < code wr CI/CD ~r package
(A) 2 (C) (F) (H)

1 SO 1 Cl/CD ﬂ Distribution r

e - Source | — ; Package
= | o Build ‘ = 9 ‘ —> Use
Developer Use bad X
dependency = | ‘ |
(E) |_

A/
Dependency | {———~ =

https://security.googleblog.com/
IOT\cQ) BZH Lessons learned from integrating SBOM in a supply chain G FOSDEM'25 14

Supply-chain Levels for Software Artifacts
SLSA (pronounced “salsa”)

Google initiative (2021) and now under OpenSSF umbrella

It's a security framework specifically designed to ensure the integrity of software artifacts.

« Artifact: Imnmutable blob of data described by an * Predicate: Arbitrary metadata in a predicate-specific
attestation, usually identified by cryptographic content schema (ex: link)
hash.
* Bundle: A collection of Attestations, which are usually
* Attestation: Authenticated, machine-readable metadata but not necessarily related.
about one or more software artifacts. Contain at least an
envelope (attestation + signature) and a statement « Storage/Lookup: where/how verifiers find attestations
(Subject + predicate) for a given artifact.
Subject Predicate Link Signature
' & BT 2 i; N 75 oy
Artifact “sha256:11be5" was built by GitHub Actions from github.com/foo/foo.git@7ffd2. Signed, GitHub.
A v A
Statement

e

|OT\£€) BZH Envelope 15

In-toto co

The way to manage all of your supply chain metadata

[rA I =
Ol L RI:M
@ ¥ @ v
{

-t e type": "Link",

:I;,-\ ode name build

byproducts” : byprodu perc

stderr . {"stderr"”: tdout Jh-]"

}. } edi

command [] command .

‘n'm rial materials tior |

products products Sour o

foo {"sk foo" : { ters \ t1o p B
1}, v slgnatures

i n_value ko return_value 8 materials '

G slgnatures” : -1 signatures |] }
3 1 !
J (J J G J (j J

* Think of in-toto as the common “language” for all things software supply
chain security.

 SLSArecommends using in-toto attestations as the vehicle to express
Provenance and other attributes of software supply chains.

IOT\tﬁ) BZH Lessons learned from integrating SBOM in a supply chain Q FOSDEM'25 16

SLSA provenance attestations + in-toto
adding trust to BOMs & artifacts

* A SLSA provenance attestation is an in-toto attestation of a certain type.

* An in-toto attestation is made of different nested parts:

« an Envelope that contains a payload and its associated signature

* a Statement that associates a Subject (e.g. an artifact) to a Predicate

* Build platforms (e.g. redpesk factory) must specify and define
the relevant External Parameters and their meanings.

« External Parameters allow verifiers to make sure an artifact and |
its associated provenance attestation are the legitimate ones. Predicate | _ A
- Attestation of provenance Signature Q)

* Two community-maintained build types are currently available: Lo U

e GitHub Actions Workflow Subject Predicate Link Signature
. . r & bV o Jf b W 7 =N
* Triggered Google Cloud Build * — E _ _ : ' : : .
Artifact “sha256:11be5” was built by GitHub Actions from github.com/foo/foo.git@7ffd2. Signed, GitHub.
. v A
Statement
3 %)
g
Envelope

IOT\cQ) BZH Lessons learned from integrating SBOM in a supply chain {-¥ FOSDEM'25 17

https://github.com/slsa-framework/github-actions-buildtypes/tree/main/workflow/v1
https://github.com/slsa-framework/gcb-buildtypes/tree/main/triggered-build/v1

WO~ ;s Wl

R e e T =
=R T R R T S U R

21
22

23
24
25
26
27
28
29
30
31
32
33

SLSA + In-toto real example

Taking the python-urllib3 package, here is a
in-toto attestation including slsa provenance predicate :

{

3+ 07+@

* Tool - cosign : a tool that allows to sign and verify signatures

"_type": "https://in-toto.io/Statement/v1",
"predicateType": "https://slsa.dev/provenance/vi",
"predicate": . . . L] .
e taoerinitionts ¢ * Infra - sigstore : keyless signing and verification
"buildType": "https://redpesk.bzh/build-workflow/vi",
rexternalparaneters": { (based on transparency model)
"stack": "distro"“,
"project": "apps_f5039dcl", cosign attest-blob

"application™: "python-urllib3_722229d5" - key red DESK fact ory. key
I . N . .
“internalParameters”: {}, --predicate redpesk_factory_predicate.json
"resolvedDependencies”: [] --type slsaprovenancel -y
T --output-signature attestation_with_key.intoto.json

"runDetails": { -
"builder®: { python3-urllib3-1.26.5-6.apps.rpbatz_1.1.noarch.rpm

| "id": "https://distro-app-next.lorient.iot"
.
b Resulting signature: attestation_with_key.intoto.json
"invocationId": "https://distro-app-next.lorient.iot/#/| {
apps_t503%dcl/applications/python-urllib3_722229d5/app-
"startedOn": "2024-09-05T10@:11:40Z",
"downloadUrl": "https://download.redpesk.bzh/redpesk-lts/batz-2.1-update/packa
aarch64/os/Packages/p/python3-ur1lib3-1.26.5-6.apps.rpbatz_1.1.nparch.rpm"

"payloadType": "application/vnd.in-toto+json",

"payload":

"eyJfdHlwZSI6Imho@dHBzO18vaW4 tdG90by5pby9TdGFOZW1lbnQvdjAUMSISINByZWRp
Y2FOZVR5cGU101JodHRwezovL3Nsc2EuZGV2L3Byb3Z 1bmFuY2UvdjEiLCIZdWIqZWNOT
jpbeyJuYWilIjoicHlea. ..

} InNNOYTIANII6IjczY2UyMDUBN]IWNGUYYjgSNTgENTQWM2Ix] izTk5MjLivzdhN Slgstore
¥ TgOZWY10TEGMFOifX19fQ==",
iy) 4 "signatures": [
"subject": [5 {
{ _ 6 "keyid": ",
"name": "python3-urllib3-1.26.5-6.apps.rpbatz 1.1.noarch.rpm"”, 7 ”g'iﬂé*n'r "MEYCTQCIN7pQELS
“digest®: { +027tVLK19ZUB0mWC]51sp3De6 tEXDAMbGThAMeS TWwABWEHUWQF4KAQBT js
"sha256": "73ce20546204e2b895895403b16d014bed929bc7a584er591664bacab531e497" bjaU183d797ZA0qvpr8a"
} 8 }
} g 1
1 e }

1
IOT&BZH Lessons learned from integrating SBOM in a supply chain Q FOSDEM'25 18

<

- - 6
Verify an attestation Y

)
check the cryptographic signatures and the chain of trust, 0 Q
CheCk that the provenance meets Check expectations Step 2 Step 1 check SLSA Build level
expectations about the source, a 4 4 & o
(optional): check recursively dependencies e | s |HEEY . DEEEENEEERES
Existing tools : A%
.- Check dependencies Step 3
* S|Sa-VeI’Ierr #3 frecursively) Dependencies
e cosign #
ease the 1 step of verification by checking that a P s compromse cepardancy € Comprois bl rcess
signed attestation matches either with a given public & Bl from modified source & Comoromtee nackane aisty
key or an OpenlD Connect identity. H Use comprormised package

But in our specific context, step 2 is not covered (verification process) !

IOT\é) BZH Lessons learned from integrating SBOM in a supply chain G FOSDEM'25 19

https://github.com/slsa-framework/slsa-verifier
https://github.com/sigstore/cosign

Verify example 6@

* verify the attestation signature with the corresponding public key 6 Q

1 cosign verify-blob-attestation \

2 --signature attestation_with_key.1intoto.json

3 --key redpesk.pub

- --type=slsaprovenancel \

5 --verboseh

G python3-urllib3-1.26.5-6.apps.rpbatz_1.1.noarch.rpm
7 Verified OK

 manually verify build platform parameters :

1 $ jg -r '.payload' attestation_keyless.intoto.json | M
2 baseBd -d |

3 ‘ jq '.predicate.buildDefinition.externalParameters’
4 1

5 "application": "python-urllib3_722229d5",

6 "project"™: "apps_f503%dcl",

["stack": "distro"

8}

IJOT@ BZH Lessons learned from integrating SBOM in a supply chain Q FOSDEM'25 20

* Most of examples and existing attestations

of provenance use
https://github.com/slsa-framework/slsa-github-generator

and consequently are specific to Github.

* Therefore provenance checking tools are also Github oriented !

 slsa-verifier : hard-coded support for Github Actions and Google Cloud Build
https://github.com/slsa-framework/slsa-verifier/issues/734

* Cosign : container images oriented, low support for generic blobs (eg. build platform
parameters)

IOT\A_@) BZH Lessons learned from integrating SBOM in a supply chain Q FOSDEM'25 21

https://github.com/slsa-framework/slsa-github-generator
https://github.com/slsa-framework/slsa-verifier/issues/734

Summarize

Long and complex work to support all use cases

Multiple formats (eg. SPDX / CycloneDX) don’t simplify implementation

Not an easy task if you don’t want to rely on Github

Publish our specific use cases (without github) in order to open discussions

Simple use case of SBOM report for images build available (mid-February)

In next redpesk Factory armel 1.8 !

Feel free to test with Community Edition https://community-app.redpesk.bzh/
Integration of VEX will be available in next version armel 1.9 (July)

IOT\tﬁ) BZH Lessons learned from integrating SBOM in a supply chain Q FOSDEM'25 22

https://community-app.redpesk.bzh/

*UONNQLNY SUOWIWOD SANESID Y} pue 85U UOIEIUSWNI0A 8al4 (NS aY) Japun s1 1| *9002 Ul 1a[aWweN oer Aq uasel aimoaid feuibuo ue si aimoid siyL

Lorient Harbour, South Brittany, France

23

Lessons learned from integrating SBOM in a supply chain Q FOSDEM'25

|I0T.& BZH

https://www.gnu.org/licenses/fdl-1.3.fr.html
https://creativecommons.org/licenses/by-sa/3.0/deed.fr

Links

e Cyber Resilient Act https://en.wikipedia.org/wiki/Cyber Resilience Act
https://digital-strategy.ec.europa.eu/en/library/cyber-resilience-act

* Directive NIS-2 https://cyber.gouv.fr/la-directive-nis-2

e SPDX https://spdx.github.io/spdx-spec/v3.0.1/
https://github.com/spdx

 CycloneDX https://cyclonedx.org/
https://github.com/cyclonedx

* SLSA https://slsa.dev/

» slsa-verifier https://github.com/slsa-framework/slsa-verifier

* In-toto https://in-toto.io/

e Cosign https://github.com/sigstore/cosign

« CUE https://cuelang.org/

* Rego https://www.openpolicyagent.org/docs/latest/policy-language/

IOT\QBZH Lessons learned from integrating SBOM in a supply chain Q FOSDEM'25

24

https://en.wikipedia.org/wiki/Cyber_Resilience_Act
https://digital-strategy.ec.europa.eu/en/library/cyber-resilience-act
https://cyber.gouv.fr/la-directive-nis-2
https://spdx.github.io/spdx-spec/v3.0.1/
https://github.com/spdx
https://cyclonedx.org/
https://github.com/cyclonedx
https://slsa.dev/
https://github.com/slsa-framework/slsa-verifier
https://in-toto.io/
https://github.com/sigstore/cosign
https://cuelang.org/
https://www.openpolicyagent.org/docs/latest/policy-language/

Links

* redpesk:
— Website: https://www.redpesk.bzh

— Documentation: https://docs.redpesk.bzh

— Sources: https://github.com/redpesk

e |0T.bzh:

- Website: https://iot.bzh/
— Articles: https://iot.bzh/articles

|IOT\&BZH

Lessons learned from integrating SBOM in a supply chain

{¥ FOSDEM'25

25

https://www.redpesk.bzh/
https://docs.redpesk.bzh/
https://github.com/redpesk
https://iot.bzh/
https://iot.bzh/articles

|IOT\&BZH

Annexes

redpesk

IOT 2 BZH

Lessons learned from integrating SBOM in a supply chain

{¥ FOSDEM'25

26

sigstore - rektor

cosign also uploads some metadata to a public immutable ledger that can be audited by anyone.
Here an example of a the rekor transparent log : https://search.sigstore.dev/?logindex=153334293

rekor Rekor Search a O

Attribute

Log Index
Log Index v 153334293

Showing 1 of 1

Entry UUID: 108e9186e8c5677a2232d4bb45a7250f797fd8e2f72e987b33564650a0ad8eab3110b4cd204827e3

TYPE LOG INDEX INTEGRATED TIME
dsse 153334293 2 months ago (2024-12-04T15:59:38+01:00)
Hash

Raw Body

IOT\&) BZH Verification

https://search.sigstore.dev/?logIndex=153334293

ﬁ a redpesk fish has two sides g,‘

redpesk OS redpesk Factory
1. LTS version based on RHEL 1. Ease development and
devel version based on CentOS integration workflows in cross
Stream environment

2. Enriched by microservices and 2 propject/apps management and
security frameworks integration through webUI and

3. Multiple SoC vendors BSPs are CLI
sgpported _ 3. Supports developers, integrators,
4. Light containers support: QA engineers, delivery managers
redpak

4. Manage multiple projects with a
5. Zephyr/RTOS support clear hierarchy

IOT\cQ) BZH Lessons learned from integrating SBOM in a supply chain G FOSDEM'25 28

Short development cycle - localbuilder

specfile

1. Goal: editing

~ ease developper day to day work (local edition)

but still maintain projects & applications in CI/CD
factory

2. Solution: rp-cli and localbuilder container
(including SDK) running on developer machine

3. Restriction: only for development, unsigned
packages

redpesk factory Developer

@ S AN Laptop
-« — T |.—l
S I

IOT\é) BZH Lessons learned from integrating SBOM in a supply chain G FOSDEM'25

Rapid dev.
local

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

