

A Pantheon of The Gods

Open Source Multiphysics Software for Analysis of Fusion Power Plant Systems

90 9 90 9 UK Atomic Energy <u>Au</u>thority

02/02/2025

Dr. Aleksander Dubas

Overview

What Is Fusion Energy?

What Are The Challenges?

Finding A Solution

The Pantheon

Learnings

A Pantheon of The Gods

UK Atomic Energy Authority

Fusion Reaction

UK Atomic Energy Authority

Magnetic Confinement

UK Atomic Energy Authority

©S. Li, H. Jiang, Z. Ren, C. Xu, 2014 CC-BY-4.0

And Many Other Systems

UK Atomic Energy Authority

©Oak Ridge National Laboratory, 2016 CC-BY-2.0

Multiphysics

Uncertainty

邀

UK Atomic Energy Authority

Image Credit: Stephen Dixon, UKAEA

UK Atomic Energy Authority

We're going to need a bigger computer And some scalable software to run on it

Criteria For A Scalable Library/Framework

Parallel First.

A code designed to scale well on parallel HPC from the outset.

• Permissively Licensed.

Able to run anywhere on any number of processes, with extension and modification permitted.

• Portable.

Able to run on any exascale hardware.

• Extensible.

Open to external contribution and follow good software engineering practices.

• Supported.

User community, forums, mailing lists, documentation.

- Compiled Language.
- Stable API, Actively Developed.

The Selection

UK Atomic Energy Authority

- All things considered, there is no clear winner
- Trade off between performance and development effort
- Selected MOOSE due to large amount of pre-implemented physics
- A snapshot in time, so doing the same process now may yield different results
- For more details:

https://archive.fosdem.org/2020/schedule/event/
exascale_fusion_sim/

Image Credit: Helen Brooks, UKAEA

Apollo/Hephaestus

Image Credit: Alex Blair, UKAEA

UK Atomic Energy Authority

Image Credit: Stephen Dixon, Daniel Mason, Nitesh Bhatia, UKAEA

Proteus

Image Credit: Aleksander Dubas, Rupert Eardley-Brunt, UKAEA

Et Cetera

UK Atomic Energy Authority

https://github.com/aurora-multiphysics

Aegis

Charged particle tracking for heat deposition.

• Hippo

Thermal hydraulics through coupling to OpenFOAM.

Phaeton

Fast ion heat flux through coupling to ASCOT5.

Platypus

Enabling MOOSE simulations using MFEM FE library.

Learnings

Portable?
 Able to run on any exascale hardware.
 This means GPU.
 Platypus (see previous slide) or
 Cardinal: https://cardinal.cels.anl.gov/

- Compiled Language?
 Easier to find Python developers.
 Most users aren't running at the scale where it matters.
- Finite Element Types? Allows better formulations. These are now available in MOOSE.

Thank You For Your Attention

Any Questions?

Reach out: aleksander.dubas@ukaea.uk

Give it a try: https://github.com/aurora-multiphysics

With thanks to: Andrew Davis, Helen Brooks, Alexander Blair, Stephen Dixon, Daniel Mason, Nitesh Bhatia, Rupert Eardley-Brunt, Waqar Butt, Harry Saunders, Seimon Powell, Matthew Bluteau, Luke Humphrey, Alexander Whittle and everyone else who has contributed to Aurora Multiphysics.