
A pure Rust multi-platform app

for chat and beyond

Kevin Boos

Project Robius Tech Lead

Principal Architect @ Futurewei

Matrix devroom

February 2nd, 2025

Robrix

One code base,
many platforms

Background & Motivation

3

4

1. Create a multi-platform app dev experience fully in Rust

➢ leverage the robust, safe, and performant Rust ecosystem

➢ avoid dealing with multiple languages/environments

➢ never write a single line of platform-specific code

2. Make Mobile a first-class concern in the Rust community
• the Rust experience on Mobile has felt neglected

Project Robius goals at a glance

Devs

can:

Background — Project Robius app dev framework

• Fully open-source, decentralized, and community-driven

• Independent collaborators across US, Europe, Aus/NZ, S. America, China

• All components are also written entirely in Rust

5

But why Robius? … there are already great Rust UI toolkits out there

• egui, Iced, Slint, Leptos, Tauri, Dioxus, Makepad, Xilem, Freya, Ribir, …

 → There’s more to app dev than just drawing a GUI!

• Traditionally, Rust apps have been “less Rust, more other code”
(a small Rust core surrounded by big platform-specific wrappers

1. Needed a key app to drive Robius development

• “What kind of app is highly demanding?” (of UI & platform abstractions)

➢ A modern chat client!

• Requires network, geolocation, file/image access, audio/video capture &
playback, system notifications, clipboard, rich text formatting & input,
persistent device storage & cache, connectivity mgmt, biometric auth,
secret key storage, and so much more!

• Why Matrix?

• Shares our values: open-source, decentralized, community-driven,
 and now focused on Rust

Why Robrix, though?

6

1. Needed a key app to drive Robius development
➢ A modern chat client is quite demanding

• Matrix aligns with our values & goals

2. But then... since we’ve already started, why stop there?
Let’s go further!
• Can we make a unique Matrix client for power users / productivity?

• Can we make Robrix into a central “hub” for federated services?
• Focus on the needs of open-source community & developers

• Combine Matrix, ActivityPub, local AI LLMs, source code tools, etc.

Why Robrix, though?

7

The better the app, the stronger the case for Rust app dev!

Goals & Roadmap

8

9

Main Robius goal: create reference design of full system stack

Application

Business logic

Platform/OS Native Layers
(Linux, macOS, Windows, Android, iOS, Web, HarmonyOS …)

UI toolkit
(Makepad, Dioxus, etc)

Platform Abstractions

Networking Location

Sensors

Concurrency
Mgmt library

Application logic
UI

logic
UX

logic

Widgets

Events

Animation Actions

Drawing

Multimedia

Power Permissions Connectivity

Storage

Other Events Keychain Dialogs Notifications

ClipboardDrag & DropTime/AlarmIPC/Signals

FFI layer (Rust → native language)

runtime
components

main UI
thread
token

async
tasks

bkgd thread workloads

comm. primitives

 Robrix App
 Architecture

(Matrix parts)

• Robrix’s needs guide
Robius development and
implementation priority

• Writing/using Robrix
forces us to dogfood
Robius components

• and Makepad, of course,
which needed many new
features to support Robrix

10

Concurrent
Runtime

async executor,
multithreading,

thread pools

Concurrency
Mgmt library

Application

Business logic (SDK use & more)

Platform/OS Native Layers

UI toolkit
(Makepad) Platform Abstractions

Networking Location

Application logicRooms
list

Widgets

Animation

Drawing

Multimedia

Permissions

Connectivity

Storage/Cache

Input Events Keychain Notifications

ClipboardDialogs

FFI layer (Rust → native language)

Room
view

Rooms
browser

thread
token:

&mut Cx

async
task pool

thread-local caches

Show
notifs.

Local msg
search

Persistent
settings

Jump
to

event

message
send/recv

Event
querySettings,

Themes
In-app
notifs.

Context
menus

Member
info

Image
viewer

Login, session
management

Multimedia
streaming,

calling

Quick
replies

Create or
delete
room

Video
display

Account
management

Input reaction AuthenticationFile/media dialog

Access
camera, mic,

speaker

Reactions,
read

receipts

Search
Rich text
format

Join/
leave
room

Threaded view

Read
receipt

Application
UI / UX

UI SDK comm/sync

Authenticationchannels, segqueues, etc

Events

Actions

and more!

Stage 1: publish app with fundamental Matrix client features
• Basic messaging, login, app persistence, E2EE support

• Flesh out sufficient App Dev ecosystem and UI toolkit for major platforms

Stage 2: Matrix client for “power” users, plus AI integration
• Feature parity with existing major clients (incl. administrative features)

• Responsive UI design with productive (IDE-like) multi-room view

• Local LLM runtime for AI chat bots & conversation summaries
• Key point: does not jeopardize E2EE or data sovereignty

Stage 3: central “hub” for federated & open-source services

• Collect multiple services: chat, discussion forums, code + issues + PRs,
announcements/microblogs, feed of notifications/activity/news

• Identity management via OpenWallet

11

Overall Roadmap

> Q4

Q3

Q1

12

Roadmap Stage 1

Stage 1: the basics
• Realize Matrix client fundamentals

• Login, rooms list (sliding sync),

basic messaging, replies, reactions,

rich text formatting, images,

E2EE support, app persistence

• Publish pre-alpha versions of Robrix

• Requires enhanced build tooling for

releasing, signing, packaging

• Establish app framework for

high performance and efficiency

• Despite inherent async/concurrency

• Key: do “nothing” on main UI thread

13

Gradually checking items
off our feature tracker

• Complete platform support

from the beginning

Targeted platform abstractions / OS service APIs

15

• System notifications

• Biometrics & authentication

• File/image picker dialogs

• Context menus (custom, native)

• Menu bar (desktop only)

• Rich clipboard

• Drag & Drop

• Default URI/Intent handling

• Content sharing to foreign app

• Native font access

• Input Method Editors (IME)

• Native gesture recognition

• Connectivity management
• WiFi, Bluetooth, NFC, nearby devices

• GPS/Location access

• Multimedia capture
• Device discovery & configuration
• Camera – snapshots, video, settings
• Audio – input, MIDI, playback

• Sensors

• Native alarms, timers

• Keychain (secret storage)

• Power management/status

• App lifecycle state transitions

• OS-standard data directories

and so much more …

Current status (EOY 2024)

16
and so much more …

• System notifications

• Biometrics & authentication

• File/image picker dialogs

• Context menus (custom, native)

• Menu bar (desktop only)

• Rich clipboard

• Drag & Drop

• Default URI/Intent handling

• Content sharing to foreign app

• Native font access

• Input Method Editors (IME)

• Native gesture recognition

• Connectivity management
• WiFi, Bluetooth, NFC, nearby devices

• GPS/Location access

• Multimedia capture
• Device discovery & configuration
• Camera – snapshots, video, settings
• Audio – input, MIDI, playback

• Sensors

• Native alarms, timers

• Keychain (secret storage)

• Power management/status

• App lifecycle state transitions

• OS-standard data directories

demo time!

for future/offline viewers:
the demo included an overview of Robrix running on macOS and Android.

Check out our git repo and run it on your own machine here:

https://github.com/project-robius/robrix

1717

https://github.com/project-robius/robrix

• Realizing all the practical, unexciting UI features

• Exposing & abstracting platform APIs / OS services

• Handling complex multi-step builds (Rust + others)
• Standardizing compilation of non-Rust system glue layers

• Supporting platform-specific toolchains and linking conventions

• Defining and executing pre- and post-compilation steps

• Packaging: bundling, codesigning, distributing apps
• Required for system notifications, geolocation (and so much more)

• Maintaining high performance in the face of concurrency and async
• Key objective: do “nothing” on main UI thread

• But, UI & other select platform functions must run on “main” thread

• Certain APIs require async, others forbid async

• Contending with multiple vastly different UI toolkits

Major Robrix-driven implementation challenges

18

all across
disparate
platforms

insert fetched
media (sync)media cache

(shared memory)

non-blocking
media lookup
 (fast path)

insert fetched
media (async)

non-blocking requests to async funcs

responses from async funcs;
visual updates from backend server

Nested sync requests,
which may also (rarely)
require async functions

non-blocking requests
to bkgd (sync) functions

We manually manage mixed concurrency contexts

UI main thread

Background thread

Background thread
in async runtime pool

Makepad
UI toolkit

Platform/OS Native Layers

Robius Platform Abstractions

direct function call
sync –> sync channel
sync –> async channel
async –> sync channel

App main func,
draw routines,
event handlers

Matrix SDK

App logic
calling async
platform APIs

App logic
calling sync

platform APIs
App logic

using Matrix

Major platforms already supported; others to come

• Desktop

• macOS

• Linux (Debian-based, X11)

• Windows

• Mobile

• Android

• iOS

• Web/WASM
• Waiting on Matrix SDK

• OpenHarmony OS

• Waiting on availability
and platform integration Q2-Q3

22

Roadmap Stages 2 & 3

Stage 2 — a Matrix client for power users

23

A. Feature parity with existing clients

B. Responsive UI with side-by-side panes & dockable tabs
• Visually beautiful and customizable across desktop, tablet, foldable, mobile

• Fast navigation with keyboard-driven interaction mode

C. Integration with local LLMs to leverage AI benefits
• Automated topic analysis, chat synopses of “what you missed”, etc.

• Chatbot response channels to help newcomers in
large open-source project communities

• Local-only LLM runtime preserves E2EE & data sovereignty

A. Reach feature
 parity with
 existing clients

24

Features that
don’t drive

Project Robius
development

Robius: App Dev in Rust

B. Multi-pane dockable tab UI

25Robius: App Dev in Rust

(the original design proposal)

26

Robrix’s
actual

"IDE" UI

• Auto-adapts to

screen sizes
• Same code works

on Desktop,

Mobile, Tablet...

Unlock productivity

for work/social

chats (just like IDEs)

C. AI capabilities via local-only LLM integration

Wouldn’t it be great to enable this (and more) for Matrix chats?
• But how can this work without giving an AI service access to all of your data?

• Local LLMs — benefit from AI without jeopardizing E2EE, data sovereignty

• Auto-handle public FAQs in an open-source project community

• “Action items”: AI identifies important messages & to-dos from a long backlog

• “What’s happening”: AI-driven conversation summaries & topical analysis

• Longer-term: Matrix as a medium to share LLM agent recipes, chatbot demos

27

Discord’s chat topic summaries

Robius: App Dev in Rust

Robrix will leverage Moxin’s existing featureset

Robrix will leverage Moxin’s existing featureset

• Moxin is another Robius app

• Also drove development of widgets,
platform crates, packaging logic

• Models run locally using WasmEdge,
a cross-platform WASM LLM engine

• Work has already begun to
separate the discovery,
download, execution, and
configuration of LLMs from the
app’s UI frontend

• Coming soon: more modalities
beyond LLM agents

29Robius: App Dev in Rust

AI Chat

Robrix in-app AI LLMs

30Robius: App Dev in Rust

via a local Moxin installation

31

AI Chat

AI model
is user’s
choice

Stage 3 — a community hub (for open-source)

32

Chat (Matrix) Microblogs (Mastodon) Community Forums (Lemmy)

Code [re]view (git) Notes

Notifications,
activity pane

News feeds (RSS)

Robius: App Dev in Rust

Notes Chat
(Matrix)

Code [re]view
(git)

News feeds (RSS)

ROBRIX

Collect multiple
federated services
in a single experience

33

Microblogs
(Mastodon)

Community Forums
(Lemmy)

Potential for
powerful combo

features & actions

Robius: App Dev in Rust

ROBRIX

Identity mgmt.

via OpenWallet

34

• Integrate with client for

extra out-of-band functions

• Decentralized ID provider

Robius: App Dev in Rust

Many other service
categories exist

35

• Most based on ActivityPub

Image sharing Pixelfed

Music sharing Funkwhale

Podcasting Castopod

Video hosting PeerTube

Full blogging Wordpress,

Plume, etc.

37

• Robrix & Robius are just getting started!

• Many challenges remain: UI design, platform support, build tooling

• Continue driving collaboration with Rust UI/App ecosystem, lang/libs team

• Robrix aims to provide value back to the Matrix community
• Not just an app — an external user of matrix-rust-sdk

• An independent, multi-platform test case for the SDK that shows off its power!

• Also a bit of a forcing function for correctness + documentation clarity

• Strives to be a good answer for “how can I use this SDK function”?

• Simple, “non-enterprise” coding style within a fully-fledged app environment

• For more, check out two recent blog posts: robius.rs/blog/

• A 2024 retrospective, and 2025 roadmaps for Robius and Robrix

Wrapping up, but looking forward

https://robius.rs/blog/

38

Acknowledgments

Klim Tsoutsman

Rik Arends

Eddy Bruël

Sebastian
Michailidis

Cassaundra
Smith

Jorge Bejar

Julian
Montes de Oca

Edward Tan Alex Zhang

Poon Yong
Quan (Alan)

Yiming
(Aarav) Lu

Tyrese Luo

Guo KeZhen
(Cork)

39

Thanks! Interested? Please reach out:

 @project-robius/robrix

 #robrix@matrix.org

 #robius@matrix.org

 @kevinaboos

	Intro
	Slide 1
	Slide 2

	Motivation
	Slide 3
	Slide 4: Project Robius goals at a glance
	Slide 5: Background — Project Robius app dev framework
	Slide 6: Why Robrix, though?
	Slide 7: Why Robrix, though?

	Project Goals/Roadmaps
	Slide 8
	Slide 9
	Slide 10
	Slide 11

	Roadmap Stage 1
	Slide 12
	Slide 13: Stage 1: the basics
	Slide 14: Gradually checking items off our feature tracker
	Slide 15: Targeted platform abstractions / OS service APIs
	Slide 16: Current status (EOY 2024)
	Slide 17: demo time! for future/offline viewers: the demo included an overview of Robrix running on macOS and Android. Check out our git repo and run it on your own machine here: https://github.com/project-robius/robrix
	Slide 18: Major Robrix-driven implementation challenges
	Slide 19: We manually manage mixed concurrency contexts
	Slide 21: Major platforms already supported; others to come

	Roadmaps 2 and 3
	Slide 22
	Slide 23: Stage 2 — a Matrix client for power users
	Slide 24: A. Reach feature parity with existing clients
	Slide 25: B. Multi-pane dockable tab UI
	Slide 26: Robrix’s actual "IDE" UI
	Slide 27: C. AI capabilities via local-only LLM integration
	Slide 28: Robrix will leverage Moxin’s existing featureset
	Slide 29: Robrix will leverage Moxin’s existing featureset
	Slide 30: Robrix in-app AI LLMs
	Slide 31
	Slide 32: Stage 3 — a community hub (for open-source)
	Slide 33: Collect multiple federated services in a single experience
	Slide 34: Identity mgmt. via OpenWallet
	Slide 35: Many other service categories exist

	Conclusion
	Slide 37: Wrapping up, but looking forward
	Slide 38: Acknowledgments
	Slide 39

