
RDE
Tools for managing reproducible development environments

Nicolas Graves

February 2, 2025

Outline

My linux journey

RDE

How does RDE build upon GNU Guix ?

RDE’s future

More info (not actually presented, for questions and transcript)

Windows –> Ubuntu-based (2013-14)

▶ Removing proprietary OS is possible!
▶ FOSS is great!
▶ Minimalism and effiency is great!
▶ (l|x)ubuntu revives old computers!

Ubuntu –> Archlinux (2020)

▶ UNIX Philosophy is great!
▶ Crafting your system is fun!
▶ but it can be tedious. . .

Archlinux –> RDE / GNU Guix (2021)

UNIX Philosophy is great. but forgets transaction costs.
Crafting your system is fun. but life and loss happens!
but it can be tedious. but it doesn’t have to be!

Archlinux –> RDE / GNU Guix (2021)

. . . but forgets transaction costs. ⇒ GNU Guile

. . . but life and loss happens! ⇒ Guix Reproducibility

. . . but it doesn’t have to be! ⇒ RDE framework

RDE
Developer and power user friendly GNU/Linux distribution building
upon Guix and its tools (Guile API, guix daemon, guix system, guix
home).

Figure: Guix FOSDEM 2023 presentation

What is RDE to Linux?

GNU/Linux Emacs Emacs
RDE Spacemacs Doom Emacs
Features Layers Modules
GNU Guix use-package straight.el

Features are blocks of configuration that provide certain
functionality for a user, such as setting up your email, adding your
GnuPG keys, or configuring your window manager.

Minimalist and sane

Ergonomic Sane keybindings, good contrast, readable fonts.
Lightweight battery efficient, wayland, fast native apps.

Offline most of workflows/apps should work without network.
Attention minimal use of notifications.
Standards comply with the XDG Base Dirs Specification.

Tools

Purpose Tool
Window Manager Sway
Terminal Alacritty/Foot
Login Shell GNU Bash
Interactive Unix Shell Zsh
Service Manager/Init System GNU Shepherd
Package Manager GNU Guix
Filesystem Btrfs
Multimedia Framework PipeWire
Video Player mpv
Everything Else ;) GNU Emacs

How does it look?

Reproducible and stateless

Building on GNU Guix:
▶ any setup/configuration can be easily replicated
▶ roll-back if you break any configuration

⇒ A huge garanty for further system crafting!
We try to make all state (directories) explicit and syncable or
temporary. ⇒ Help yourself avoid loosing data!

Hackable

▶ GNU Guile + Guix APIs
▶ No compromission on extensibility : Easy to throw out or

modify any part of setup.
RDE is opiniated, but is composable and flexible enough:
▶ X language development,
▶ science,
▶ sysadmin/devops. . .

RDE config

Friends with GNU Guix, compatible with GNU Guix development

Features

A feature unifies Home/System configuration to make it easier for
the user to opt-in/out of a functionality.

A non-exhaustive list of features

email feature-mail-settings, -msmtp, -notmuch, -l2md
wm feature-sway, -waybar, -swayidle, -swaylock,

-sway-screenshot
programming feature-guile, -python, -prolog, -go, -ocaml, -lisp
emacs (general) feature-emacs, -emacs-completion, -emacs-vertico,

-emacs-help, -emacs-eat
emacs (dev) feature-emacs-git, -emacs-eglot, -emacs-dape
emacs (org) feature-emacs-org, -emacs-org, -emacs-org-citation,

-emacs-org-roam

Value added above Guix: cross-configuration

What if I want a piece of config in Software A if and only if
Software B is present ?
⇒ Simple! Conditionnally check the presence of software B, and
include your piece of config only in this case.

Value added above Guix: Serializer debate

What if I want a service that is not yet in Guix or RDE ?
⇒ We have serializers to do the job quickly, already :
▶ css
▶ elisp
▶ ini
▶ json
▶ lisp
▶ nginx
▶ utils

⇒ Write guix home/system services in a more flexible way.

RDE’s future

RDE is quite mature and has been usable for years!
Work in progress:
▶ Programming languages / AI integration
▶ Statelessness / Impermanence
▶ New API to allow users to define an <rde-config> based on

options rather than features
▶ Generalizing package propagation
▶ and much more!

⇒ Good dynamic (along with the Guile ecosystem!)

Support the project

Principles

The principles I presented earlier are organized as such:

Main
Ergonomic Sane keybindings, good contrast, readable fonts.

Reproducible Setup can be easily replicated.
Hackable Easy to throw out or modify any part of setup.
Stateless All state must be explicit and syncable or temporary.

Secondary

Lightweight and battery efficient wayland, fast native apps.
Offline most of workflows and apps should work without

network.
Attention-friendly minimal use of notification and other distractive

things.

I want to try RDE’s ideas, but I use NixOS !

Guix is great too ;p Or you can try ordenada, a port of RDE for
NixOS

	My linux journey
	RDE
	How does RDE build upon GNU Guix ?
	RDE's future
	More info (not actually presented, for questions and transcript)

