DA4C: Leveraging Delta Encodings for Faster and
Lighter Container Image Updating

FOSDEM 2025 (1 Feb. Dev room - Containers)
Naoki Matsumoto (Kyoto University, Japan)

Background

Increasing container use in network-resource restricted environment
- Bandwidth is low (e.g., Cellular :50~300Mbps[1])

To start or update containers, users download and expand container images (pull)

"\
-

|
RS ssmw]

~ image

?Iﬁ

K [1]Mobile access bandwidth in practice: measurement, analysis, and implications(Xinlei Yang et al., 2022) -

S

‘~\~ Pulling image

Container image

Problems in Container Image Updating

Large update data cause problems

VS

Cow-bandwidt Cloud

| < =
U_L ’
OO _Network..._——
S Cost increases!]

g{ Deployment takes too much time--:]

Lightweight and Fast Updating is Needed!

KYOTO UNIVERSITY 3

[Congestion!
]

Current Container Image Updating

Current container runtimes (e.g., containerd) provides layer-based image

| aver-based images has a limitation to provide efficient update[2]
Time to update from postgres:13.1 to postgres:13.2

I)

100.00
80.00
60.00
40.00
20.00

000 - —
N 10Mbps 50Mbps 100I\/Ibpj 500Mbps 1Gbps 5Gbps 10Gbps

v Network Bandwidth

We assume these network environments

Download time <
is dominant

Pa

Time to pull (sec)

m Download Expand

[2] Starlight: Fast Container Provisioning on the Edge and over the WAN (Jun Lin Chen et al., 2022)

KYOTO UNIVERSITY

Related Works: File-oriented deduplication

Starlight[2], zstd:chunked

« Pulling only new or updated files

« zstd:chunked implements the same approach

Starlight Client

-

The client has some images .‘}

M

\

J

[2] Starlight: Fast Container Provisioning on the Edge and over the WAN (Jun Lin Chen et al., 2022)

KYOTO UNIVERSITY

Send only new

Starlight Server

/

_

=

¢

N/

|

|

Starlight or updated files I
Client

i) N
Requesting new image B
| Requesting ge N

Problems in Related Works

These works rest a room to reduce data size for update

File-oriented deduplication
« Cannot handle partial modifications on files efficiently

 Most of the content in some execs and shared libs are not updated

old file

new file

{ modified

{ Need to transfer an entire of a file J

~

[Delta encodings can handle modifies as a “delta”]

An Approach of D4C

Reducing data to update images using delta encodings

« Transferring only required partial data to update

Applying deltas (Client) Generating deltas (Server)
s A - p
= |, Old image “
. N Update bundle
Old image .’ ~
." update
L “« x — .‘}Update bundle
.’ : / Generate
Apply % ! Dietribut |
New image deltas Y Cellular or Istribute deltas ‘\
other low-bandwidth News ferme .’
_ networks _ N)
KYOTO um[Non-layered updating [Update data size is reduced!] :

Overview of D4C

D4C uses merge strategy for container image updating

* A server generates and merges deltas, and a client applies deltas to old images

Client

(3) Work
with runtime

—

(5) Provide t

container |mages

Di3FS

<

Snapshotter

plugin

L

Server

(

(2) Generate required
update bundle with merge

Update bundle

server

Update

4

N

(4) Mount delta

.s’ .s’ .\’ bundle with Di3FS)

bundle

KYOTO UNIVERSITY

(0) Download image

store

| , U.Delta bundle
1)Generate

delta bundles

Delta Generation

Generating deltas for each file and packing them as delta bundle

« Delta encoding generates delta files for updated files

 New files are compressed

Manifest and Config for container are packed as an update bundle

N N
." Old image ." New image Update bundle
/ / - Manifest
- etc - usr - Config
- usr — usr - Delta bundle
— bin — bin - Metadata
II: fileA - fileA(updated) delta ‘ E_tlrucf[‘t”_i OI directories
i 1 ° rlie attriputes
fileB H;lg&new) COMPIESS| . fileA diff (delta file)
- fileC (new file)

KYOTO UNIVERSITY 9

Issues to Utilize Delta Encodings

Generating deltas takes much time

« Better compression requires longer time

Longer generation increases overall updating time
—How to provide requested deltas quickly?

40

§ 100 7 mmm xdelta3
o o B bsdiff
3\/ 30 - 5 80 -
o u
© i
&
(]NJ 20 =
3 5 40 A
i -
o 10 1 ©
)] o 20 A
C
. . 5
0 - I O 0 i N
postgres redis postgres redis

13.1-13.2 7.0.5-7.0.6 13.1-13.2 7.0.5-7.0.6
KYOTO UNIVERSITY (bin, 7.6MiB) (tar, 111.4MiB) (bin, 7.6MiB) (tar, 111.4MiB) 10

Strategy for Fast Delta Generation

DAC employs the approach to utilize pre-generated deltas and merging

. Merging deltas does not take much time than generating them from scratch

« Generating deltas for (V;,V;.,) in advance and merging them when requested

Server
Request A(V;, ;) e Send N\
{ Client A | Response A(Vy, V;) I Ere-generated delta $ AV, V1)
Merge ’.‘} AV, V5)
Request A(V, V) pre-generated deltas < 4
—
{ Client B } Response A(Vy,V3) < .‘} A(V1,V3) \." A(V,, V3)
_\

KYOTO UNIVERSITY 11

Supported Delta Encoding Algorithms

DAC treats delta encodings as a “Plugin” with simple API

 Generate(base, updated) — delta
. Apply(base, delta) — updated
« Merge(deltaA, deltaB) — deltaC

DAC has 2 plugins based on “bsdiff” and “xdelta3”

« bsdiff does not have “Merge”. DAC provides newly implemented “Merge”

« xdelta3 provides “Merge” only via CLI

Lazy Delta Applying: Di3FS

Applying deltas on-demand when the file is opened — No need to apply all deltas
same approach with lazy-pulling

4 Di3FS) ;

ReadDir, GetAtt —_—
1. Showing new files D ——
with metadata in the delta bundle — >
New file attributes —
2. Applying delta when (metadata)
Old file the files is opened 0 cat new.txt
pen
—
x =) (=) — =
Applymg Read(offset=0, len=4096)
Delta file . el Vel |
—
3. Reading data OK(Data=0xab, Oxbc,:**)

) 13

Implementation and Evaluation

Environment: Slow cellular network

« Parameters are Throughput: 50 Mbps, Latency(RTT): 40 ms [1][4]

Client(VM) Server(VM)

vCPU 8 cores | yCPU 8 cores
Memory 32GB tc emulated Memory 32GB

(50 Mbps, 40 ms)

Used Image Tag (size)

postgres 13.1(109.44MB), 13.2(109.51MB), 13.3(109.62MB)
redis 7.0.5(40.43MB), 7.0.6(40.44MB), 7.0.7(40.44MB)
nginx 1.23.1(54.14MB), 1.23.2(54.19MB), 1.23.3(54.25MB)
pytorch cudal2.l-cudnn8-runtime-

2.2.0(3.41GB), 2.2.1(3.41GB), 2.2.2(3.73GB)

[1]Mobile access bandwidth in practice: measurement, analysis, and implications(Xinlei Yang et al., 2022)
[4] Revisiting the Arguments for Edge Computing Research(Blesson Varghese, et al., 2021)

Data Size Reduction to Update Images

Compared delta size reduction with file-oriented deduplication approach
— D4C provides deltas only 5~40% size compared to file-oriented deltas
= 20x compression at most!

o
o

c

M~ |9

35 o I file-oriented ;:- ©o G
A =
I o A 0 xdelta3 N N = 800 >
=] L0 B bsdiff < -
Y25 = O 2
N - 600 =
)] ~
@ 20 (O]
E
S 15 400 ¥
o o ™ . g
£ 10 oo <t =2 Q1N c
o © © 200 2
Q5 N gm N ©
. -+

|

postgres nginx redis
d1-.2 2—.3 1-.3 1-.2 2—.3 1-.3 5-.6 6.7 S5-.7 .0-.1 1-.2 .0-.2

Breakdown of Size Reduction

« Huge size reductions were seen in executables and shared libs

« Deltas for compressed or bit-encoded files were inflated

3.5
3

2.5

2 ¢ /usr/lib/postgresqI/13/Iib/bitcode/postgres.index.bc

1.5

File-oriented is betterT / /usr/lib/postgresql/13/bin/postgres

1 B

l. /usr/lib/x86_64-linux-gnu/libcrypto.so.1.1
b

Compressed size ratio

DA4C’ approach is better \0.5

0
Lower is better 0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000

Compressed new file size (bytes)

FYOTO UNIVERSTTY Deltas between postgres:13.1 and postgres:13.2 with bsdiff 0

Time to Generate Deltas

Time to generate deltas increased compared to file-oriented approach
e bsdiff took much time due to large files (over 100MiB files)

« xdelta3 did faster than bsdiff, but it still takes time compared to file-oriented

e

@]

—_ M oe) 2
¥ 15.0 1 @ file-oriented © ™M I~ i 2500‘2
S I xdelta3 o = S e >
S 125 - i Q o ™~ 5
2 I bsdi 3 S 2000T
— 10.0 = = = S
g 10 o =]
: 1500 B
qc) 7.5 ~ < Sl Q g

I —) O

9 [o N = 1000 &
o 5.0 < < < c
= mm © © < 10 o 0 o © (L: 500 %
Bt E E PR ool ool o i 0 ¢
= o < &8 w
= 0 E

l_

postgres nginx redis pytorch
A1-.2 2—.3 1-.3 -2 2—.3 1-.3 .5-.0 6.7 5-.7 .0-.1 A1-.2 .0-.2

Time to Merge Deltas

Evaluated the performance to merge .X—.X+1 and .X+1—.X+2 deltas

Merge provides deltas fast with less size inflation

« Merge ran 65x faster than generating from scratch for pytorch with bsdiff
 Merged deltas had almost same size with generated ones

SOEU“
g a @ xdelta3 38 5 ° 1.2
iff 39.4 S 5
c B bsdi 40 a E 10
8 3 -‘é’ UV —~
S 05 HEos
S g 29
o 2 = T 206
c 200 50
= 0 E
o] — 04
+— = ©
ol 10 o %
£ S5 Q0 02
a £
0 0 = 0.0
postgres nginx redis pytorch postgres nginx redis pytorch

KYOTO UN 1-.3 1-.3 5-.7 .0-.2 1-.3 1-.3 5-.7 0-.2 18

Time to Update Container Images

Measured in 50 Mbps limited client-server network environment

« As for case .X — .X+2, the server merges deltas on-demand

— DA4C provides updates 10x faster update at most

8 .
3 BN file-oriented ~ o
3:_ " 0 xdelta3 ~ < ® 3 150
6 0 B bsdiff 5o =
o

1
m

2.5
1.9

2.6
1.9

1.9

50

Time to pull (Seconds)
N EaN

=
o
o

Time to pull (Seconds, pytorch)

o
o

postgres nginx redis pytorch
A1-.2 2—.3 1-.3 1-.2 2—.3 1-.3 5-.6 6.7 5-.7 0-.1 Ad1-.2 .0-.2

Performance Degradation on Applications

Evaluated updated images(postgres, pytorch)

No performance degradation were not seen in benchmarks
* Di3FS caches delta-applied files on a storage when a file is opened for the first time

« First open (e.g. library loading) will take time, but the performance is not affected

— 40 250 4
£ —& - Di3FS(bsdiff) | S ¢ -4+ Load libs(Di3FS)
]] X ‘GE')'BO Native §40 | Load libs(Native)
pgbench resu £ 301 e
Time per transaction Transactions per] $==PpumnPp===p===¢ E 30 1
approach (ms) second o 20 8
Di3FS 11.549+0.722 869.453+57.484| £ 5 20 1
c 0
Native FS 11.540+0.843 871.386*x65.541 & 10 1 =
© g’ 10 @t @ - @ Y
> 2
<, g o-

1 2 3 4 5 1 2 3 4 5
KYOTO UNIVERSITY N-th launch N-th launch

Next Step

More and more works are left

Current implementation is just a PoC and lacks many features
« Sophisticated CLI tools, Server's WebUI, etc..
« How to decide the deltas generated in advance?

Seeking a combination with ztsd:chunked
* Providing updated chunks with delta encodings will be beneficial
 How to choose the base and updated chunks to generate deltas?

Summary and Questions?

Objective: Reducing data size and time to update container images
Solution: Utilizing delta encodings

Evaluation: D4C provides 20x compression compared to file-oriented

« Huge reduction in executable binaries and shared libraries

« Performance degradation is little excepting some cases

Next step: Implementing more and more

DAC is available at
https://github.com/naoki9911/d4c

KYOTO UNIVERSITY 22

https://github.com/naoki9911/d4c

	スライド 1: D4C: Leveraging Delta Encodings for Faster and Lighter Container Image Updating
	スライド 2: Background
	スライド 3: Problems in Container Image Updating
	スライド 4: Current Container Image Updating
	スライド 5: Related Works: File-oriented deduplication
	スライド 6: Problems in Related Works
	スライド 7: An Approach of D4C
	スライド 8: Overview of D4C
	スライド 9: Delta Generation
	スライド 10: Issues to Utilize Delta Encodings
	スライド 11: Strategy for Fast Delta Generation
	スライド 12: Supported Delta Encoding Algorithms
	スライド 13: Lazy Delta Applying: Di3FS
	スライド 14: Implementation and Evaluation
	スライド 15: Data Size Reduction to Update Images
	スライド 16: Breakdown of Size Reduction
	スライド 17: Time to Generate Deltas
	スライド 18: Time to Merge Deltas
	スライド 19: Time to Update Container Images
	スライド 20: Performance Degradation on Applications
	スライド 21: Next Step
	スライド 22: Summary and Questions?

