
D4C: Leveraging Delta Encodings for Faster and
Lighter Container Image Updating

FOSDEM 2025 (1 Feb. Dev room - Containers)

Naoki Matsumoto (Kyoto University, Japan)

1

Background

Increasing container use in network-resource restricted environment

• Bandwidth is low (e.g., Cellular :50~300Mbps[1])

To start or update containers, users download and expand container images (pull)

2

CellularCloud

ISP

コンテナ
Container

コンテナコンテナ
Container

Pulling image

Run with
image

Container image

[1]Mobile access bandwidth in practice: measurement, analysis, and implications(Xinlei Yang et al., 2022)

Problems in Container Image Updating

Large update data cause problems

3

Lightweight and Fast Updating is Needed!

Low-bandwidth
Network

Cloud

IoT Device

Cost increases!

Congestion!

Deployment takes too much time…

Current Container Image Updating

Current container runtimes (e.g., containerd) provides layer-based image

Layer-based images has a limitation to provide efficient update[2]

4

0.00

20.00

40.00

60.00

80.00

100.00

10Mbps 50Mbps 100Mbps 500Mbps 1Gbps 5Gbps 10Gbps

T
im

e
 t

o
 p

u
ll
 (

s
e
c
)

Network Bandwidth

Time to update from postgres:13.1 to postgres:13.2

Download Expand

Download time
is dominant

We assume these network environments

[2] Starlight: Fast Container Provisioning on the Edge and over the WAN (Jun Lin Chen et al., 2022)

Related Works: File-oriented deduplication

Starlight[2], zstd:chunked

• Pulling only new or updated files

• zstd:chunked implements the same approach

5

[2] Starlight: Fast Container Provisioning on the Edge and over the WAN (Jun Lin Chen et al., 2022)

a
ContainerContainer Starlight

Client
Container

Starlight Client Starlight Server

Compare files between images

The client has some images
Send only new
or updated files

Requesting new image

Problems in Related Works

These works rest a room to reduce data size for update

File-oriented deduplication

• Cannot handle partial modifications on files efficiently

• Most of the content in some execs and shared libs are not updated

6

old file

new file

modified

Need to transfer an entire of a file

Delta encodings can handle modifies as a “delta”

An Approach of D4C

Reducing data to update images using delta encodings

• Transferring only required partial data to update

Old image

New image

update

Generating deltas (Server)

7

a

Apply
deltas

Applying deltas (Client)

Update bundle

Generate
deltasDistribute

コンテナコンテナ
Container

Cellular or
other low-bandwidth

networks

Update bundle
Old image

New image

Non-layered updating Update data size is reduced!

Overview of D4C

D4C uses merge strategy for container image updating

• A server generates and merges deltas, and a client applies deltas to old images

8

ServerClient

Container Runtime

Di3FS

Snapshotter
plugin

Container Container

(5) Provide
container images

(3) Work
with runtime

Update bundle
server

(4) Mount delta
bundle with Di3FS

Registry

Delta bundle
store

(0) Download image

(1)Generate
delta bundles

(2) Generate required
update bundle with merge

Update
bundle

Delta Generation

Generating deltas for each file and packing them as delta bundle

• Delta encoding generates delta files for updated files

• New files are compressed

Manifest and Config for container are packed as an update bundle

9

/
├ etc
└ usr

└ bin
├ fileA
└ fileB

/
├ usr
└ usr

└ bin
├ fileA(updated)
├ fileB
└ fileC(new)

compress

delta

・Manifest
・Config
・Delta bundle

・Metadata
・Structure of directories
・File attributes

 ・fileA.diff (delta file)
 ・fileC (new file)

Old image New image Update bundle

Issues to Utilize Delta Encodings

Generating deltas takes much time

• Better compression requires longer time

Longer generation increases overall updating time

→How to provide requested deltas quickly?

10

Strategy for Fast Delta Generation

11

D4C employs the approach to utilize pre-generated deltas and merging

Merging deltas does not take much time than generating them from scratch

• Generating deltas for (𝑽𝒊, 𝑽𝒊+𝟏) in advance and merging them when requested

Client A

Request Δ(𝑉0, 𝑉1)

Response Δ(𝑉0, 𝑉1)

Client B

Δ(𝑉0, 𝑉1)

Δ(𝑉1, 𝑉2)

Δ(𝑉2, 𝑉3)

Request Δ(𝑉1, 𝑉3)

Response Δ(𝑉1, 𝑉3)

Server

Send
pre-generated delta

Merge
pre-generated deltas

Δ(𝑉1, 𝑉3)

Supported Delta Encoding Algorithms

D4C treats delta encodings as a “Plugin” with simple API

• Generate(base, updated) → delta

• Apply(base, delta) → updated

• Merge(deltaA, deltaB) → deltaC

D4C has 2 plugins based on “bsdiff” and “xdelta3”

• bsdiff does not have “Merge”. D4C provides newly implemented “Merge”

• xdelta3 provides “Merge” only via CLI

12

Lazy Delta Applying: Di3FS

Applying deltas on-demand when the file is opened → No need to apply all deltas

13

same approach with lazy-pulling

Di3FS

1. Showing new files
with metadata in the delta bundle

New file attributes
(metadata)

ReadDir, GetAttr

Open

New file
Applying

delta

2. Applying delta when
the files is opened

OK
Read(offset=0, len=4096)

OK(Data=0xab, 0xbc,…)3. Reading data

Old file

Delta file

ls -l

cat new.txt

Implementation and Evaluation

Environment: Slow cellular network

• Parameters are Throughput: 50 Mbps, Latency(RTT): 40 ms [1][4]

14

Client(VM)
vCPU 8 cores
Memory 32GB

Server(VM)
vCPU 8 cores
Memory 32GB

[1]Mobile access bandwidth in practice: measurement, analysis, and implications(Xinlei Yang et al., 2022)
[4] Revisiting the Arguments for Edge Computing Research(Blesson Varghese, et al., 2021)

tc emulated
(50 Mbps, 40 ms)

Used Image Tag (size)

postgres 13.1(109.44MB), 13.2(109.51MB), 13.3(109.62MB)

redis 7.0.5(40.43MB), 7.0.6(40.44MB), 7.0.7(40.44MB)

nginx 1.23.1(54.14MB), 1.23.2(54.19MB), 1.23.3(54.25MB)

pytorch cuda12.1-cudnn8-runtime-
2.2.0(3.41GB), 2.2.1(3.41GB), 2.2.2(3.73GB)

Data Size Reduction to Update Images

Compared delta size reduction with file-oriented deduplication approach

→ D4C provides deltas only 5～40% size compared to file-oriented deltas

= 20x compression at most!

15

Breakdown of Size Reduction

• Huge size reductions were seen in executables and shared libs

• Deltas for compressed or bit-encoded files were inflated

16

0

0.5

1

1.5

2

2.5

3

3.5

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000

C
o
m

p
re

s
s
e
d

 s
iz

e
 r

a
ti

o

Compressed new file size (bytes)

/usr/lib/x86_64-linux-gnu/libcrypto.so.1.1

/usr/lib/postgresql/13/lib/bitcode/postgres.index.bc

D4C’ approach is better

File-oriented is better /usr/lib/postgresql/13/bin/postgres

Lower is better

Deltas between postgres:13.1 and postgres:13.2 with bsdiff

Time to Generate Deltas

Time to generate deltas increased compared to file-oriented approach

• bsdiff took much time due to large files (over 100MiB files)

• xdelta3 did faster than bsdiff, but it still takes time compared to file-oriented

17

Time to Merge Deltas

Evaluated the performance to merge .X→.X+1 and .X+1→.X+2 deltas

Merge provides deltas fast with less size inflation
• Merge ran 65x faster than generating from scratch for pytorch with bsdiff

• Merged deltas had almost same size with generated ones

18

Time to Update Container Images

Measured in 50 Mbps limited client-server network environment

• As for case .X → .X+2, the server merges deltas on-demand

→ D4C provides updates 10x faster update at most

19

Performance Degradation on Applications

Evaluated updated images(postgres, pytorch)

No performance degradation were not seen in benchmarks

• Di3FS caches delta-applied files on a storage when a file is opened for the first time

• First open (e.g. library loading) will take time, but the performance is not affected

20

pgbench result

approach
Time per transaction

(ms)
Transactions per

second

Di3FS 11.549±0.722 869.453±57.484
Native FS 11.540±0.843 871.386±65.541

Next Step

More and more works are left

Current implementation is just a PoC and lacks many features

• Sophisticated CLI tools, Server’s WebUI, etc..

• How to decide the deltas generated in advance?

Seeking a combination with ztsd:chunked

• Providing updated chunks with delta encodings will be beneficial

• How to choose the base and updated chunks to generate deltas?

21

Summary and Questions?

Objective: Reducing data size and time to update container images

Solution: Utilizing delta encodings

Evaluation: D4C provides 20x compression compared to file-oriented

• Huge reduction in executable binaries and shared libraries

• Performance degradation is little excepting some cases

Next step: Implementing more and more

22

D4C is available at
https://github.com/naoki9911/d4c

https://github.com/naoki9911/d4c

	スライド 1: D4C: Leveraging Delta Encodings for Faster and Lighter Container Image Updating
	スライド 2: Background
	スライド 3: Problems in Container Image Updating
	スライド 4: Current Container Image Updating
	スライド 5: Related Works: File-oriented deduplication
	スライド 6: Problems in Related Works
	スライド 7: An Approach of D4C
	スライド 8: Overview of D4C
	スライド 9: Delta Generation
	スライド 10: Issues to Utilize Delta Encodings
	スライド 11: Strategy for Fast Delta Generation
	スライド 12: Supported Delta Encoding Algorithms
	スライド 13: Lazy Delta Applying: Di3FS
	スライド 14: Implementation and Evaluation
	スライド 15: Data Size Reduction to Update Images
	スライド 16: Breakdown of Size Reduction
	スライド 17: Time to Generate Deltas
	スライド 18: Time to Merge Deltas
	スライド 19: Time to Update Container Images
	スライド 20: Performance Degradation on Applications
	スライド 21: Next Step
	スライド 22: Summary and Questions?

