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Background

Increasing container use in network-resource restricted environment
- Bandwidth is low (e.g., Cellular :50~300Mbps[1])

To start or update containers, users download and expand container images (pull)
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Problems in Container Image Updating

Large update data cause problems
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Current Container Image Updating

Current container runtimes (e.g., containerd) provides layer-based image

| aver-based images has a limitation to provide efficient update[2]
Time to update from postgres:13.1 to postgres:13.2
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[2] Starlight: Fast Container Provisioning on the Edge and over the WAN (Jun Lin Chen et al., 2022)
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Related Works: File-oriented deduplication

Starlight[2], zstd:chunked

« Pulling only new or updated files

« zstd:chunked implements the same approach
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Problems in Related Works

These works rest a room to reduce data size for update

File-oriented deduplication
« Cannot handle partial modifications on files efficiently

 Most of the content in some execs and shared libs are not updated
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new file
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{ Need to transfer an entire of a file J

~

[ Delta encodings can handle modifies as a “delta” ]




An Approach of D4C

Reducing data to update images using delta encodings

« Transferring only required partial data to update
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Overview of D4C

D4C uses merge strategy for container image updating

* A server generates and merges deltas, and a client applies deltas to old images
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Delta Generation

Generating deltas for each file and packing them as delta bundle

« Delta encoding generates delta files for updated files

 New files are compressed

Manifest and Config for container are packed as an update bundle
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Issues to Utilize Delta Encodings

Generating deltas takes much time

« Better compression requires longer time

Longer generation increases overall updating time
—How to provide requested deltas quickly?
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Strategy for Fast Delta Generation

DAC employs the approach to utilize pre-generated deltas and merging

. Merging deltas does not take much time than generating them from scratch

« Generating deltas for (V;,V;.,) in advance and merging them when requested
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Supported Delta Encoding Algorithms

DAC treats delta encodings as a “Plugin” with simple API

 Generate(base, updated) — delta
. Apply(base, delta) — updated
« Merge(deltaA, deltaB) — deltaC

DAC has 2 plugins based on “bsdiff” and “xdelta3”

« bsdiff does not have “Merge”. DAC provides newly implemented “Merge”

« xdelta3 provides “Merge” only via CLI




Lazy Delta Applying: Di3FS

Applying deltas on-demand when the file is opened — No need to apply all deltas
same approach with lazy-pulling
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Implementation and Evaluation

Environment: Slow cellular network

« Parameters are Throughput: 50 Mbps, Latency(RTT): 40 ms [1][4]

Client(VM) Server(VM)

vCPU 8 cores | yCPU 8 cores
Memory 32GB tc emulated Memory 32GB

(50 Mbps, 40 ms)

Used Image Tag (size)

postgres 13.1(109.44MB), 13.2(109.51MB), 13.3(109.62MB)
redis 7.0.5(40.43MB), 7.0.6(40.44MB), 7.0.7(40.44MB)
nginx 1.23.1(54.14MB), 1.23.2(54.19MB), 1.23.3(54.25MB)
pytorch cudal2.l-cudnn8-runtime-

2.2.0(3.41GB), 2.2.1(3.41GB), 2.2.2(3.73GB)

[1]Mobile access bandwidth in practice: measurement, analysis, and implications(Xinlei Yang et al., 2022)
[4] Revisiting the Arguments for Edge Computing Research(Blesson Varghese, et al., 2021)




Data Size Reduction to Update Images

Compared delta size reduction with file-oriented deduplication approach
— D4C provides deltas only 5~40% size compared to file-oriented deltas
= 20x compression at most!
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Breakdown of Size Reduction

« Huge size reductions were seen in executables and shared libs

« Deltas for compressed or bit-encoded files were inflated
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Time to Generate Deltas

Time to generate deltas increased compared to file-oriented approach
e bsdiff took much time due to large files (over 100MiB files)

« xdelta3 did faster than bsdiff, but it still takes time compared to file-oriented
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Time to Merge Deltas

Evaluated the performance to merge .X—.X+1 and .X+1—.X+2 deltas

Merge provides deltas fast with less size inflation

« Merge ran 65x faster than generating from scratch for pytorch with bsdiff
 Merged deltas had almost same size with generated ones
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Time to Update Container Images

Measured in 50 Mbps limited client-server network environment

« As for case .X — .X+2, the server merges deltas on-demand

— DA4C provides updates 10x faster update at most
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Performance Degradation on Applications

Evaluated updated images(postgres, pytorch)

No performance degradation were not seen in benchmarks
* Di3FS caches delta-applied files on a storage when a file is opened for the first time

« First open (e.g. library loading) will take time, but the performance is not affected
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Next Step

More and more works are left

Current implementation is just a PoC and lacks many features
« Sophisticated CLI tools, Server's WebUI, etc..
« How to decide the deltas generated in advance?

Seeking a combination with ztsd:chunked
* Providing updated chunks with delta encodings will be beneficial
 How to choose the base and updated chunks to generate deltas?




Summary and Questions?

Objective: Reducing data size and time to update container images
Solution: Utilizing delta encodings

Evaluation: D4C provides 20x compression compared to file-oriented

« Huge reduction in executable binaries and shared libraries

« Performance degradation is little excepting some cases

Next step: Implementing more and more

DAC is available at
https://github.com/naoki9911/d4c
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