
1
Josh Lee
@joshleecreates@hachyderm.io

O11y in One:
ClickHouse® as a unified
telemetry database

2
Josh Lee
@joshleecreates@hachyderm.io

How I usually start...

3
Josh Lee
@joshleecreates@hachyderm.io

"The OpenTelemetry project does not include
any kind of database or backend UI."

4
Josh Lee
@joshleecreates@hachyderm.io

6
Minimum no. of o11y tools deployed by a
typical organization

— Grafana State of Observability Report

5
Josh Lee
@joshleecreates@hachyderm.io

What we really need...

6
Josh Lee
@joshleecreates@hachyderm.io

Challenges
with
Disparate
Telemetry
Systems

7
Josh Lee
@joshleecreates@hachyderm.io

What are we storing?
Metrics, traces, logs, profiles, events

Resource metadata

Graphs & topologies

Snapshots & deltas

Configuration

8
Josh Lee
@joshleecreates@hachyderm.io

Is There a Silver Bullet?
Full-text search

Efficient compression

Real-time analytics

Relational

Petabyte-scale

9
Josh Lee
@joshleecreates@hachyderm.io

No. Obviously.
... but ClickHouse comes pretty
close.

10
Josh Lee
@joshleecreates@hachyderm.io

Introducing
ClickHouse

• SQL-compatible
• Massively scaleable
• Really, really fast

11
Josh Lee
@joshleecreates@hachyderm.io

ClickHouse for
Observability

12
Josh Lee
@joshleecreates@hachyderm.io

Telemetry is
WORM
Write-Once, Read-Many

13
Josh Lee
@joshleecreates@hachyderm.io

B-Trees: Optimized
for Reads

14
Josh Lee
@joshleecreates@hachyderm.io

Log-Structured Merge Trees: Optimized for
ingestion

http://www.benstopford.com/2015/02/14/log-structured-merge-trees/

15
Josh Lee
@joshleecreates@hachyderm.io

Log-Structured Merge Trees: Background
compaction

http://www.benstopford.com/2015/02/14/log-structured-merge-trees/

16
Josh Lee
@joshleecreates@hachyderm.io

Part
Index Columns

Part
Index Columns

Rewritten, Bigger Part
Index Columns

Update and delete also rewrite parts

17
Josh Lee
@joshleecreates@hachyderm.io

Unmerged,
freshly

inserted
part Fully

merged
part

Query efficiency

18
Josh Lee
@joshleecreates@hachyderm.io

• Fast writes
• Time-friendly
• Easy cleanup
• Cost-effective

ClickHouse for Observability

How does this help?

19
Josh Lee
@joshleecreates@hachyderm.io

Data
Transformation &
Management

• Materialized Views
• TTL
• Tiered storage

20
Josh Lee
@joshleecreates@hachyderm.io

• Grafana Datasource Plugin
• Jaeger w/ ClickHouse backend
• cLoki
• Kafka table engine

ClickHouse for Observability

Integrations

21
Josh Lee
@joshleecreates@hachyderm.io

ClickHouse for Observability

Integrations via OpenTelemetry

22
Josh Lee
@joshleecreates@hachyderm.io

• Excellent compression, even with variable schemas
• Practically unlimited cardinality
• Horizontally scalable ingestion & querying

ClickHouse for Observability

More Benefits

23
Josh Lee
@joshleecreates@hachyderm.io

ClickHouse for Observability

Challenges

• SQL is not PromQL*
• Overly complex for small data volumes*
• Not a turn-key solution

24
Josh Lee
@joshleecreates@hachyderm.io

"The OpenTelemetry project does not include
any kind of database or backend UI."

25
Josh Lee
@joshleecreates@hachyderm.io

We need a complete
observability solution

26
Josh Lee
@joshleecreates@hachyderm.io

SigNoz
coroot
qryn
HyperDX
DIY

27
Josh Lee
@joshleecreates@hachyderm.io

SigNoz
coroot
qryn
HyperDX
DIY

28
Josh Lee
@joshleecreates@hachyderm.io

Coroot
Batteries-included, no-code
observability

29
Josh Lee
@joshleecreates@hachyderm.io

30
Josh Lee
@joshleecreates@hachyderm.io

31
Josh Lee
@joshleecreates@hachyderm.io

32
Josh Lee
@joshleecreates@hachyderm.io

qryn
"Querying" — LogQL, PromQL, and TempoQL
for OpenTelemetry sources, with ClickHouse
storage

33
Josh Lee
@joshleecreates@hachyderm.io

34
Josh Lee
@joshleecreates@hachyderm.io

coroot

• eBPF-based Node-Agent
• OTLP ingestion via Collector

Gateway
• Uses (mostly) standard

OpenTelemetry Exporter
schema + new schema for
profiles

qryn

• Uses on its own collector
exporter / collector
distribution

• Exposes Tempo, Loki, OTLP,
and Prometheus APIs

• Projects into compatible
formats using Materialized
Views

35
Josh Lee
@joshleecreates@hachyderm.io

Schema
Considerations

36
Josh Lee
@joshleecreates@hachyderm.io

Schema Considerations

• ZSTD Compression
• Delta encoding
• Bloom filter indexes for maps (resources) and logs
• MergeTree, partitioned on time
• 7-day TTL

37
Josh Lee
@joshleecreates@hachyderm.io

OpenTelemetry
Collector Exporter
for ClickHouse

• Maps for metadata
• Efficient full-body

text-search
• Materialized View for

span durations

38
Josh Lee
@joshleecreates@hachyderm.io

qryn

• Fingerprints for unique
time series

• Indexed labels (via
Materialized Views)

• Allows for efficient
updates
(ReplacingMergeTree)

• Null Engine for raw ingest

39
Josh Lee
@joshleecreates@hachyderm.io

Scaling for
Production

40
Josh Lee
@joshleecreates@hachyderm.io

Managing Multiple Collectors

41
Josh Lee
@joshleecreates@hachyderm.io

The Altinity
Operator • PVC management

• Rolling upgrades
• Built-in monitoring

42
Josh Lee
@joshleecreates@hachyderm.io

Alerting & Other
Considerations

43
Josh Lee
@joshleecreates@hachyderm.io

Conclusion

Why Unified
Observability
Storage?

• Simplified management
• Simplified scaling
• Cost management
• Standardization and normalization of

metadata
• Post-hoc dependency mapping
• Cross-signal correlation

44
Josh Lee
@joshleecreates@hachyderm.io

Thank
You

