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O11y in One:
ClickHouse® as a unified 
telemetry database
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How I usually start...
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"The OpenTelemetry project does not include 
any kind of database or backend UI."
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6
Minimum no. of o11y tools deployed by a 
typical organization

— Grafana State of Observability Report
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What we really need...
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Challenges 
with 
Disparate 
Telemetry 
Systems
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What are we storing?
Metrics, traces, logs, profiles, events

Resource metadata

Graphs & topologies

Snapshots & deltas

Configuration



8
Josh Lee
@joshleecreates@hachyderm.io

Is There a Silver Bullet?
Full-text search

Efficient compression

Real-time analytics

Relational

Petabyte-scale
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No. Obviously.
... but ClickHouse comes pretty 
close.



10
Josh Lee
@joshleecreates@hachyderm.io

Introducing 
ClickHouse

• SQL-compatible
• Massively scaleable
• Really, really fast
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ClickHouse for 
Observability
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Telemetry is 
WORM
Write-Once, Read-Many
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B-Trees: Optimized 
for Reads
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Log-Structured Merge Trees: Optimized for 
ingestion

http://www.benstopford.com/2015/02/14/log-structured-merge-trees/
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Log-Structured Merge Trees: Background 
compaction

http://www.benstopford.com/2015/02/14/log-structured-merge-trees/
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Part
Index   Columns

Part
Index   Columns

Rewritten, Bigger Part
Index   Columns

Update and delete also rewrite parts
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Unmerged, 
freshly 

inserted 
part Fully 

merged 
part 

Query efficiency
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• Fast writes
• Time-friendly
• Easy cleanup
• Cost-effective

ClickHouse for Observability

How does this help?
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Data 
Transformation & 
Management

• Materialized Views
• TTL
• Tiered storage
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• Grafana Datasource Plugin
• Jaeger w/ ClickHouse backend
• cLoki
• Kafka table engine

ClickHouse for Observability

Integrations
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ClickHouse for Observability

Integrations via OpenTelemetry
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• Excellent compression, even with variable schemas
• Practically unlimited cardinality
• Horizontally scalable ingestion & querying

ClickHouse for Observability

More Benefits
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ClickHouse for Observability

Challenges

• SQL is not PromQL*
• Overly complex for small data volumes*
• Not a turn-key solution
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"The OpenTelemetry project does not include 
any kind of database or backend UI."
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We need a complete 
observability solution
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SigNoz
coroot
qryn
HyperDX
DIY
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SigNoz
coroot
qryn
HyperDX
DIY
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Coroot
Batteries-included, no-code 
observability
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qryn
"Querying" — LogQL, PromQL, and TempoQL 
for OpenTelemetry sources, with ClickHouse 
storage
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coroot

• eBPF-based Node-Agent
• OTLP ingestion via Collector 

Gateway
• Uses (mostly) standard 

OpenTelemetry Exporter 
schema + new schema for 
profiles

qryn

• Uses on its own collector 
exporter / collector 
distribution

• Exposes Tempo, Loki, OTLP, 
and Prometheus APIs

• Projects into compatible 
formats using Materialized 
Views
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Schema 
Considerations
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Schema Considerations

• ZSTD Compression
• Delta encoding
• Bloom filter indexes for maps (resources) and logs
• MergeTree, partitioned on time
• 7-day TTL
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OpenTelemetry 
Collector Exporter 
for ClickHouse

• Maps for metadata
• Efficient full-body 

text-search
• Materialized View for 

span durations
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qryn

• Fingerprints for unique 
time series

• Indexed labels (via 
Materialized Views)

• Allows for efficient 
updates 
(ReplacingMergeTree)

• Null Engine for raw ingest
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Scaling for 
Production
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Managing Multiple Collectors
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The Altinity 
Operator • PVC management

• Rolling upgrades
• Built-in monitoring
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Alerting & Other 
Considerations
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Conclusion

Why Unified 
Observability 
Storage?

• Simplified management
• Simplified scaling
• Cost management
• Standardization and normalization of 

metadata
• Post-hoc dependency mapping
• Cross-signal correlation
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Thank
You


