Porting GGML to the NUX Kernel
Development Framework.

Gianluca Guida, 02/02/2025



About me.

' \\‘\;\\\\

e [talian in Cambridge (England)

 Hypervisors, Operating Systems, Security

 Currently at Rivos Inc.

 Past employers amongst others: HP, Apple (twice), Bromium, XenSource

 Ask me about synthesizers!

NB: This talk is about a personal project. Not affiliated with my current or
past employers.



About this talk.

Bringing GGML to a constrained environment.

 Part I: What is NUX?
e Part ll: What is the minimum requirement to run GGML?

e Part lll: Porting GGML to NUX.

« Part IV: Considerations and Q&A.



Part I: The NUX kernel framework.



The NUX kernel framework.

NUX systems: an overview.

 Three main components:
1. APXH (apxn): The ELF bootloader

 Bootstrap from platform
 Loads Kernel and User binaries.
 Launches the kernel and disappears.
2. NUX kernel: Kernel-Space component
 Handles interrupts, exceptions and syscalls.
3. NUX User: User-Space component

 Requests services to the kernel via syscalls.

* Initial user program running for system
initialization or single user binary system.



The NUX kernel framework.
APXH: an introduction.

APXH (apxn): The ELF bootloader
 Supports EFI (RV64 and x86), multiboot, SBI
 Loads a kernel ELF in memory

 Loads a user ELF in memory.

 Program Headers for special boot
information and kernel memory layout, e.g.:

1. Framebuffer

2. Boot and Platform Information

3. 1:1 memory map ootab
ootable

 Designed to be easily portable to new Binary

platforms and architectures.



The NUX kernel framework.

Kernel-code architecture.

libhal: CPU bootstrap and abstraction
* Jibhal x86: 1386 and AMDG64
o libhal riscv: RISCV-64

libplt: Platform configuration and abstraction t t
 Jibplt_acpi: 1386 and AMDG64
* Jibplt_sbi: RISCV-64

¢

libnux: Higher level functionalities.

 memory allocators and mapping
 user stack frames Custom Kernel Code

* global TLB coherency
e printf, panics, etc. ELF BINARY



The NUX kernel framework.

The Custom Kernel Code world-view.

Interrupts
Exception IRQs

h ¥
oo

A kernel in NUX is defined by its entry functions.
 Two initialisation entries:

e main (): Bootstrap CPU initialisation

e main ap (): Secondary CPUs initialisation.

e Runtime entries:

e entry ipi (): Inter-processor Interrupt entry.

Custom Kernel Code

 entry alarm(): Timer entry.

 entry ex(): Exceptions entry.

 entry pf (): Page-Fault entry. T

e entry irqg():IRQ entry.
User Requests
e entry sysc(): User requests entry. (syscalls)



The NUX kernel framework.

User-code architecture.

Kernel

 For user-space code, the NUX framework
provides libnux_user

e libnux_user goal is to provide a common

interface to issue syscalls.
libnux_user
 As loaded, NUX only has a single userspace

binary loaded at boot time. i

 Kernel can implement its own mechanism to
load additional user programs. Custom Userspace Code

ELF BINARY



libec: the unsung hero of NUX.

« NUX provides its own libc to create
binaries.

 libec (lib embedded-C) is a simple,
minimal libc.

e based on NetBSD libc for ease of
porting

e strict adherence to C-standard not a
goal.

 limited to functions deemed useful
for kernels and small binaries.

The NUX kernel framework.

++

NUX binary



Part Il: Running GGML.



Running GGML.

Architecture of a minimal GGML setup.

A minimal library build has:

e Platform abstraction

Platform Abstraction
* memory mgmt, time, etc.
. Graph
. - Utilit . Threadpool
* Threadpool implementation P

Graph
Execution

 Computation Graph construction

* Interpreter/VM

 executes graph ops on threadpool.

» Utility functions (including File 1/0)



Running GGML.

Software dependencies.

e At minimum GGML requires

e C++ runtime.

« Small subset of C++ standard library.
e vectors, iterators, etc. GGML Library

* A fairly complete libc (gsort, malloc/free,
file 1/0)

* libm for floating point maths.
 pthreads

« Some POSIX functionalities (time)



Part lll: Porting GGML to NUX.



Porting GGML.

Model of a NUX system.

At boot, each CPU has the same
Kernel/User image.

 Images are created by APXH and
shared amongst all CPUs.

« Code can of course be specialised
per-CPU.

CPU #0

CPU #1

CPU #2

CPU #n




Porting GGML.

Architectural choices for the port.

System Compute

NUX layout is incredibly flexible.

Goal is a compute platform for
GGML.

Dedicating entire CPUs to compute
threads allows them to run without
scheduling issues.

System should communicate with

external world so at least one CPU
should be left to implement a minimal CPU #0 CPU #1 CPU #2 CPU #n
OS — unikernels anyone?




Porting GGML.

How to structure GGML in a Compute CPU.

« GGML graph compute should run in kernel or in
user space?

* GGML in kernel (bare metal):
« GGML runs uninterrupted
* No syscalls latency for system operations

 High-level code to be ported in an usually
minimal environment

e GGML in userspace:
« Code is separated in its own address space

« Easier to port libraries (e.g., using newlib
instead of libec)

 Potential latency by interrupts interrupting the
compute and need for syscalls

Compute

(

~

Unused

OR

Compute

-

Compute
Support

~




Porting GGML.

How to structure GGML in a Compute CPU.

« GGML graph compute should run in kernel or in
user space?

* GGML in kernel (bare metal):
« GGML runs uninterrupted
* No syscalls latency for system operations

 High-level code to be ported in an usually
minimal environment

e GGML in userspace:
« Code is separated in its own address space

« Easier to port libraries (e.g., using newlib
instead of libec)

 Potential latency by interrupts interrupting the
compute and need for syscalls

Unused

Solution Implemented

Compute

-

Compute
Support

~




Porting GGML.

What does GGML in Kernel looks like?

* libnuxcompute: library for managing CPUs
for uniterrupted computation.

e openlibm: [Julia Project] a library that libec
iImplements libm in an extremely portable
way. libnuxcompute

e libggmlux: Where all the dirty work is done:
e C++ runtime openlibm
 |libc extensions to libec
e stdlibc++ minimal implementation libGGML
 pthread to huxcompute mapping
* ggml_time to libnux mapping




Porting GGML.

Putting it all together.

Compute

Code implementing this at

https://github.com/glquida/blasbare

Name derives from earlier experiments
of porting BLAS to NUX

Prototype, not production ready!
Unused Unused Unused Unused

Can run a simple GPT-2 model derived
from GGML’s examples/gpt-2

CPU #0 CPU #1 CPU #2 CPU #n



https://github.com/glguida/blasbare

Part |V: Final Considerations




Final Considerations

Porting GGML to constrained and embedded systems is much easier than expected!

e Architecture is sane.

« Some simple but possibly intrusive modifications to GGML codebase might ease efforts
similar to this:

 Separate different sections (e.g., file 1/0) in different files. So their compilation can be
more easily disabled.

* Allow reimplementing a separate threadpool implementation (e.g., static and not
depending from pthread) without resorting to #ifdef’s.

* Platform abstraction could be modified to allow to implement GGML on different
platform without resorting to modifying ggml.c or simulating a POSIX/pthread interface.



Thank you!

For more information:
https://tibflush.org
https://nux.tlbflush.org
https://github.com/glguida/blasbare



https://tlbflush.org
https://nux.tlbflush.org
https://github.com/glguida/blasbare

