
Gianluca Guida, 02/02/2025

Porting GGML to the NUX Kernel
Development Framework.

About me.
Hello! 👋

• Italian in Cambridge (England)

• Hypervisors, Operating Systems, Security

• Currently at Rivos Inc.

• Past employers amongst others: HP, Apple (twice), Bromium, XenSource

• Ask me about synthesizers!

NB: This talk is about a personal project. Not affiliated with my current or
past employers.

About this talk.
Bringing GGML to a constrained environment.

• Part I: What is NUX?

• Part II: What is the minimum requirement to run GGML?

• Part III: Porting GGML to NUX.

• Part IV: Considerations and Q&A.

Part I: The NUX kernel framework.

The NUX kernel framework.
NUX systems: an overview.

• Three main components:
1. APXH (ɑρχη): The ELF bootloader

• Bootstrap from platform

• Loads Kernel and User binaries.

• Launches the kernel and disappears.

2. NUX kernel: Kernel-Space component
• Handles interrupts, exceptions and syscalls.

3. NUX User: User-Space component
• Requests services to the kernel via syscalls.

• Initial user program running for system
initialization or single user binary system.

APXH NUX
Kernel

NUX
User

The NUX kernel framework.
APXH: an introduction.

APXH (ɑρχη): The ELF bootloader
• Supports EFI (RV64 and x86), multiboot, SBI

• Loads a kernel ELF in memory

• Loads a user ELF in memory.

• Program Headers for special boot
information and kernel memory layout, e.g.:

1. Framebuffer

2. Boot and Platform Information

3. 1:1 memory map

• Designed to be easily portable to new
platforms and architectures.

APXH
core

multiboot

EFI SBI

+ = Bootable
Binary

The NUX kernel framework.
Kernel-code architecture.

libhal: CPU bootstrap and abstraction

• libhal_x86: i386 and AMD64

• libhal_riscv: RISCV-64
libplt: Platform configuration and abstraction

• libplt_acpi: i386 and AMD64

• libplt_sbi: RISCV-64
libnux: Higher level functionalities.

• memory allocators and mapping

• user stack frames

• global TLB coherency

• printf, panics, etc.

APXH libhal libplt

libnux

Custom Kernel Code

ELF BINARY

The NUX kernel framework.
The Custom Kernel Code world-view.

• A kernel in NUX is defined by its entry functions.
• Two initialisation entries:

• main(): Bootstrap CPU initialisation

• main_ap(): Secondary CPUs initialisation.

• Runtime entries:

• entry_ipi(): Inter-processor Interrupt entry.

• entry_alarm(): Timer entry.

• entry_ex(): Exceptions entry.

• entry_pf(): Page-Fault entry.

• entry_irq(): IRQ entry.

• entry_sysc(): User requests entry.

Custom Kernel Code

Timer Interrupts 
Exception IRQs

User Requests 
(syscalls)

The NUX kernel framework.
User-code architecture.

• For user-space code, the NUX framework
provides libnux_user

• libnux_user goal is to provide a common
interface to issue syscalls.

• As loaded, NUX only has a single userspace
binary loaded at boot time.

• Kernel can implement its own mechanism to
load additional user programs.

Kernel

libnux_user

Custom Userspace Code

ELF BINARY

The NUX kernel framework.
libec: the unsung hero of NUX.

• NUX provides its own libc to create
binaries.

• libec (lib embedded-C) is a simple,
minimal libc.

• based on NetBSD libc for ease of
porting

• strict adherence to C-standard not a
goal.

• limited to functions deemed useful
for kernels and small binaries.

crt0 libec C code+ +

NUX binary

Part II: Running GGML.

Running GGML.
Architecture of a minimal GGML setup.

• A minimal library build has:

• Platform abstraction

• memory mgmt, time, etc.

• Threadpool implementation

• Computation Graph construction

• Interpreter/VM

• executes graph ops on threadpool.

• Utility functions (including File I/O)

Threadpool

Platform Abstraction

Utility Graph
Build

Graph
Execution

Running GGML.
Software dependencies.

• At minimum GGML requires

• C++ runtime.

• Small subset of C++ standard library.

• vectors, iterators, etc.

• A fairly complete libc (qsort, malloc/free,
file I/O)

• libm for floating point maths.

• pthreads

• Some POSIX functionalities (time)

pthreadlibc + libm stdlibc++ POSIX
time

GGML Library

Part III: Porting GGML to NUX.

Porting GGML.
Model of a NUX system.

• At boot, each CPU has the same
Kernel/User image.

• Images are created by APXH and
shared amongst all CPUs.

• Code can of course be specialised
per-CPU.

CPU #0 CPU #1 CPU #2 CPU #n

…

Kernel

User

Kernel

User

Kernel

User

Kernel

User

Porting GGML.
Architectural choices for the port.

• NUX layout is incredibly flexible.

• Goal is a compute platform for
GGML.

• Dedicating entire CPUs to compute
threads allows them to run without
scheduling issues.

• System should communicate with
external world so at least one CPU
should be left to implement a minimal
OS — unikernels anyone?

CPU #0 CPU #1 CPU #2 CPU #n

…

Kernel

User

Kernel

User

Kernel

User

Kernel

User

System Compute

Porting GGML.
How to structure GGML in a Compute CPU.

• GGML graph compute should run in kernel or in
user space?

• GGML in kernel (bare metal):
• GGML runs uninterrupted
• No syscalls latency for system operations
• High-level code to be ported in an usually

minimal environment
• GGML in userspace:

• Code is separated in its own address space
• Easier to port libraries (e.g., using newlib

instead of libec)
• Potential latency by interrupts interrupting the

compute and need for syscalls

GGML

Unused

Compute
Support

GGML

Compute Compute

OR

Porting GGML.
How to structure GGML in a Compute CPU.

• GGML graph compute should run in kernel or in
user space?

• GGML in kernel (bare metal):
• GGML runs uninterrupted
• No syscalls latency for system operations
• High-level code to be ported in an usually

minimal environment
• GGML in userspace:

• Code is separated in its own address space
• Easier to port libraries (e.g., using newlib

instead of libec)
• Potential latency by interrupts interrupting the

compute and need for syscalls

GGML

Unused

Compute
Support

GGML

Compute Compute

OR

Solution Implemented

Porting GGML.
What does GGML in Kernel looks like?

• libnuxcompute: library for managing CPUs
for uniterrupted computation.

• openlibm: [Julia Project] a library that
implements libm in an extremely portable
way.

• libggmlux: Where all the dirty work is done:
• C++ runtime
• libc extensions to libec
• stdlibc++ minimal implementation
• pthread to nuxcompute mapping
• ggml_time to libnux mapping

libGGML

openlibm libggmlux

libnuxcompute

libec

Porting GGML.
Putting it all together.

Code implementing this at

https://github.com/glguida/blasbare

Name derives from earlier experiments
of porting BLAS to NUX

Prototype, not production ready!

Can run a simple GPT-2 model derived
from GGML’s examples/gpt-2

CPU #0 CPU #1 CPU #2 CPU #n

…

GPT-2
start

Unused

GGML

Unused

GGML

Unused

GGML

Unused

System Compute

https://github.com/glguida/blasbare

Part IV: Final Considerations

Final Considerations

• Porting GGML to constrained and embedded systems is much easier than expected!

• Architecture is sane.

• Some simple but possibly intrusive modifications to GGML codebase might ease efforts
similar to this:

• Separate different sections (e.g., file I/O) in different files. So their compilation can be
more easily disabled.

• Allow reimplementing a separate threadpool implementation (e.g., static and not
depending from pthread) without resorting to #ifdef’s.

• Platform abstraction could be modified to allow to implement GGML on different
platform without resorting to modifying ggml.c or simulating a POSIX/pthread interface.

Thank you!
For more information:

https://tlbflush.org
https://nux.tlbflush.org

https://github.com/glguida/blasbare

https://tlbflush.org
https://nux.tlbflush.org
https://github.com/glguida/blasbare

