Anton Khirnov

FFlabs

2025-02-02
FOSDEM

7%



What is multiview video




What is Mv-HEVC

@ a descendant of mvc (multiview AVC/H.264)

@ a way of packing multiple semi-independent substreams within a single
HEVC bitstream

@ based on multi-layer extensions

@ besides multiview can be used for scalable encoding, alpha, ...

@ up to 63 layers, a non-base layer may depend on (i.e. predict from) other
layers

o complex dependency graphs possible

e we only support 2 layers, second depending on the first



Why might you care about Mv-HEvC

@ stereoscopic 3D

o other multi-layer features — e.g. alpha
e multiview challenges existing assumptions, requires updating some
plumbing
e multiple output frames for a single input packet
o multiple output streams from a single decoder



implementation challenges — HEVC decoder

@ a lot of state that used to be decoder-global is now per-layer
@ common approach:

typedef struct FooContext {

typedef struct FooContext { int some_state;
int some_state; struct FooContext *children;
-
int nb_children;

} FooContext; -
} FooContext;

@ obfuscates code
@ unclear which fields are meaningful in the parent and which in the children

@ only saves a tiny bit of work
e EVIL



implementation challenges — HEVC decoder II

identify decoder-global vs. per-layer state

add per-layer context

@ move per-layer state to per-layer context

@ update frame output logic

e HEVC has frame reordering

e need to interleave frames from the decoded layers

o ability to output multiple frames at once makes it a lot simpler
all the views/layers are in one packet - frame threading not very efficient
for multiview



implementation challenges — AvCODEC generic code

need multiple output frames per input packet

decoders implement one of two APIs — older “simple” API, and newer
receive frame

receive_frame supports arbitrary M:N packets — frames mappings
frame threading only supported the “simple” API
there was a WIP patch from 2017 switching frame threading to

receive frame
FFv1 decoder abused frame threading API

o refstruct is great



implementation challenges — public API

o all multilayer properties are (in principle) per-sequence

@ need to communicate them to the caller

e view IDs
e view positions

need to allow the caller to select views to output — done via the
get_format () callback

array-type AVOptions

frames produced by decoder have side data that indicates the view they
belong to

output layer sets — no semantics, do not seem to be useful



FFMPEG CLI general transcoding pipeline

input 0 — vdec 0 filtergraph 0
output 0
/Im}/
vdec 1
input 1 filtergraph 1

adec 0
output 1

input 2 filtergraph 2

subtitle streamcopy



2022-2024 multithreading project goals

@ bring code structure in alignment with actual data flow

@ separate every major component into its own standalone object with a
clearly defined public interface

@ every major component in its own thread

e advantages:
e easier to reason about, understand, and maintain
o more flexible structure opens the way to new features
e improved throughput and CPU utilization



2022-2024 multithreading project status

o bulk of the work merged for 7.0
o some fallout, (opetuty) N0t too much
@ standalone decoders

o filtergraph chaining



(]

(]

(]

multiview support in the FFMPEG CLI

native multiview support

use view specifiers (i.e. with -map or complex filtergraph link labels) to
select views by ID, index, or position

e eg. -map 0:v:0:vpos:right
decoder objects in the cLI can now have multiple output streams
1 specifier = 1 output

could be generalized to support e.g. splitting out closed captions



