
Multiview decoding in libavcodec and ffmpeg CLI

Anton Khirnov

FFlabs

2025-02-02
FOSDEM



What is multiview video



What is mv-hevc

a descendant of mvc (multiview avc/h.264)
a way of packing multiple semi-independent substreams within a single
hevc bitstream
based on multi-layer extensions
besides multiview can be used for scalable encoding, alpha, …
up to 63 layers, a non-base layer may depend on (i.e. predict from) other
layers
complex dependency graphs possible
we only support 2 layers, second depending on the first



Why might you care about mv-hevc

stereoscopic 3D
other multi-layer features — e.g. alpha
multiview challenges existing assumptions, requires updating some
plumbing

multiple output frames for a single input packet
multiple output streams from a single decoder



implementation challenges — HEVC decoder

a lot of state that used to be decoder-global is now per-layer
common approach:

typedef struct FooContext {
int some_state;
…

} FooContext;

⇒

typedef struct FooContext {
int some_state;
struct FooContext *children;
int nb_children;
…

} FooContext;

obfuscates code
unclear which fields are meaningful in the parent and which in the children
only saves a tiny bit of work
EVIL



implementation challenges — HEVC decoder II

identify decoder-global vs. per-layer state
add per-layer context
move per-layer state to per-layer context
update frame output logic

hevc has frame reordering
need to interleave frames from the decoded layers
ability to output multiple frames at once makes it a lot simpler

all the views/layers are in one packet - frame threading not very efficient
for multiview



implementation challenges — avcodec generic code

need multiple output frames per input packet
decoders implement one of two APIs — older “simple” API, and newer
receive_frame

receive_frame supports arbitrary M:N packets → frames mappings
frame threading only supported the “simple” API
there was a WIP patch from 2017 switching frame threading to
receive_frame

ffv1 decoder abused frame threading API
refstruct is great



implementation challenges — public API

all multilayer properties are (in principle) per-sequence
need to communicate them to the caller

view IDs
view positions

need to allow the caller to select views to output — done via the
get_format() callback
array-type AVOptions
frames produced by decoder have side data that indicates the view they
belong to
output layer sets — no semantics, do not seem to be useful



ffmpeg cli general transcoding pipeline

input 0

input 1

input 2

vdec 0

vdec 1

adec 0

filtergraph 0

filtergraph 1

filtergraph 2

venc 0

aenc 0

venc 1

aenc 1

output 0

output 1

subtitle streamcopy



2022-2024 multithreading project goals

bring code structure in alignment with actual data flow
separate every major component into its own standalone object with a
clearly defined public interface
every major component in its own thread
advantages:

easier to reason about, understand, and maintain
more flexible structure opens the way to new features
improved throughput and CPU utilization



2022-2024 multithreading project status

bulk of the work merged for 7.0
some fallout, (hopefully) not too much
standalone decoders
filtergraph chaining



multiview support in the ffmpeg cli

native multiview support
use view specifiers (i.e. with -map or complex filtergraph link labels) to
select views by ID, index, or position

e.g. -map 0:v:0:vpos:right

decoder objects in the cli can now have multiple output streams
1 specifier = 1 output
could be generalized to support e.g. splitting out closed captions


