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SatNOGS in a nutshell

= Ground Stations Network

= Modular setup

= SDR based RF

= Complete open source stack

= VHF/UHF, L-Band, S-Band
(expanding to X-band)

SDR / HWRadio
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SatNOGS-COMMS transceiver

= Co-funded by LSF and ESA

= UHF and S-Band dedicated
transceivers

= STM32H7 main MCU
= ZYNQ-7020 FPGA
= Suitable for LEO up to 600 km

= Fully open software and
hardware

= Seamless SatNOGS Network
integration

= Suitable for a wide range of
Cubesat missions 2
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RF Frontend

= UHF: 395 - 450 MHz

= S-Band:
= Rx: 2025 — 2110 MHz
= Tx: 2200 — 2290 MHz
= Radio amateur bands support upon request

= Tx Power: 26 - 32 dBm (1 dB step)
= SFCG 21-2R4 compliant emissions

= Low noise figure (1.4 dB)



RF Frontend: UHF
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RF Frontend: S-Band
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10 Interfaces

= 2x CAN-2.0

= 1x SPI up to 8 Mbps
= 1x 12C

= 3x UART

= 1x RGMII Ethernet

= 2X antenna deployment

COMMS ¥0.3.2
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= Reference clock and PPS inputs

= PC/104



Missions: Curium-1 on Ariane 6!
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www.camras.nl/blog/2024/satelliet-curium-one-gezien-vanuit-dwingeloo
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Missions: PHASMA LAMARR & DIRAC

= SatNOGS-COMMS will be used in
PHASMA , a 2x 3U Cubesat mission
for spectrum monitoring

= One board for OBC/TC&C, another
for spectrum monitoring

= Q3 2025, on Transporter-15




Onboard Software
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Onboard Software: libsatnogs-comms

= Platform-agnostic

= Available as CMake
interface library

s C+4++17 everywhere!

= Abstract interface based
on pure virtual methods
for platform specific
operations

class gpio

public
enun class direction : uint8_t

INPUT = 0
OUTPUT = 1

gpio(direction dir = direction::INPUT

gbrief Toggles the GPT
Ha effect if it

virtual
toggle

virtual
get
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Onboard Software: Zephyr-RTOS

But why?
= Modern
= Huge community
= Actively developed
= Modular
= Large number of modules
= CMake

= Devicetree (please don't shoot me!)
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Onboard Software: Zephyr-RTOS

Zephyr-RTOS Components in use
ADC DAC GPIO
UART Async SPI i2c
retention sensors emmc & disk access
GNSS settings RTC

hwinfo console nanopb
LittleFS Task Watchdog CAN & ISOTP
sysbuild MCUBoot with XIP twister

And many more!
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Devicetree

—

= Support multiple hardware versions as n = e
evicetre

development progresses
FOR

= Customization options for different DUMMIES

missions though overlays

THEREIS
= Together with the libsatnogs-comms o —— NO SUCH THING!
. . for th
abstraction layer, provides a bulletproof Rest of Us!

FREE eTips at dummies.com"

code base even if the SoC changes
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Devicetree

Currently we support more than 30 different configurations for various 10
interfaces and subsystems that a satellite mission may require with ZERO
code modifications!

Overlay Functionality

Include this overlay to enable logging on the UART port labeled as UART_A on the board, which corresponds to
USART1 in the STM32 pinout

Include this overlay to enable logging on the UART port labeled as UART_B on the board, which corresponds to
USART1 in the STM32 pinout

Repurposes the SPLA to a logging UART port. The SPIA_CLK pin will be configured as TX and the SPI_A_MISO as
RX. In the STM32 pinout this UART port will correspond to USART3

Include this overiay to use the UART port labeled as UART_A on the PC104, for the GNSS data source
Include this overlay to use the UART port labeled as UART_B on the PC104, for the GNSS data source
Include this overlay to use the UART port labeled as UART_C on the PC104, for the GNSS data source
Include this overlay to use GPIO antenna deployment mechanism for the UHF antenna, using the ANT_DEP_A and
ANT_DET_A pins on the dedicated connector
Include this overlay to use GPIO antenna deployment mechanism for the S-Band, using the ANT_DEP_B and
ANT_DET_B pins on the dedicated connector 2

’https://librespacefoundation.gitlab.io/satnogs-comms/
satnogs-comms-software-mcu/group__customization.html
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C++. This is the way!

The use of C++ contributes significantly towards a reliable system that
must operate unattended

= Better code organization through polymorphism
= Safer abstraction layers (no need for weak or function pointers)

= RAIIl (Resource allocation is initialization) idiom

{
() { irg_disable(); }

&5 () { irg_enable(); }

16



C++. This is the way!

= References instead of pointers
= Template metaprogramming FTW!
= Readable and maintainable compile time checks through constexpr

= Exceptions instead of error codes
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C++. This is the way?

Challenges?

= STL and dynamic memory allocation -> No go for space!
= RTTI is not an option for the majority of embedded devices

= Even exceptions in not an option for flash limited devices
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What about the STL?
od
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etlcpp to the rescue!

= etlcpp is an STL-like library that makes 0 dynamic memory allocation
= Maximum memory is known at compile time

= No RTTI

= Fully templated

= STL API compatible

= Multiple available approaches for error handling

= Exceptions
= Error codes
= ghosting

= https://www.etlcpp.com
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Error handli

= Error identification and recovery
is one of the most critical
aspects of a satellite software

= Errors should be also logged for
the operator to be able to
troubleshoot from ground

aSTC-41C repair mission of Solar Max
satellite, 1984
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Error handli

= std::exception
= Unified error/logging system

= 4 different backends:
= SWO
= Ring buffer
= eMMC storage
= BACKUP_SRAM

= Exceptions of different severity level

class exception : public etl::exception

public

enum class se

CATASTRO!
CRITICAL
MAJOR
MINOR 3
NONE =
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Error handling

» @brief i2c I0 or timeout exception * @brief Exc ir tin c exception of the \ref radio s
* @note This exception * @note This exception iseverity::MAJOR severity

* @ingroup exceptions * @ingroup exceptions
class i2c_bsp_exception : public satnogs::comms::exception

1as exception::s

class radio_exception : public exception

public
radio_exception(string_type file_name, numeric_type line)
exception(file_name, line,
error_msg{exception: :severity::MAJOR, "Radio error",
“radioerr”, ERADIO})

[
public
2c_bsp_exception(string_type file_name, numeric_type line)
exception(
file_name, line,
error_msg{exception::severity::MINOR, "i2c error", "i2cerr", EI2C}

void
io0::sband_tx_thread(void *argl, void *arg2, void *arg3)
{

{

task_wdt_id = task_wdt_add(CONFIG_WATCHDOG_PERIOD_RADIO_TX,
task_wdt_callback, (void *)k_current_get());

auto &radio = sc::board::get_instance().radio();

msg_arbiter &arb = msg_arbiter::get_instance();

int

while (1) {

* Do stuff e.g TX, set frequency, etc

*/

} catch (const sc::exception &e) {
auto &err = error_handler::get_instance();
err.handle(e);

// Handle any other exception

} catch (const std::exception &e) {
auto &err = error_handler::get_instance();
err.handle(e);




Error handling

error_handler: :handle(const satnogs::comms::exception &

logle):
switch (e. rerity
case ception
case sc::exception
system_reboot
break;
case SC:ie y: :MAJOR
i L = e.get_errno

= e.get_errno

JOR_ERRORS
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max_elems + 1; i++

i)
vector_exception Ge

Took 25 ticks Took 24 ticks!

i < max_elems + 1; i++) { for (size t i = 0; i < max_elems + 100; i++
- try |
v.push_back(1); v.push_back(i);
} catch (etl::vector_exception &e } catch (etl::vector_exception fe

Took 24 ticks Took 94 ticks!

i < max_elems + 1; i

v.push_back(i);
} catch (efl::vector full e

catch (etl::vector_out_of_bounds &

Took 24 ticks!
25



» #satnogs-comms:matrix.org

» gitlab.com/librespacefoundation/satnogs-comms

» https://libre.space

= info@libre.space

See you at the booth!
Come and visit our booth at K Level 2!

Swag available!
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