SatNOGS COMMS An Open Source e
Communlcatlon Subsystem for CubeSats %3

FOSDEM 2025 e

) Manolls Surllgas manolis@libre. space v
Libre Space Foundation Sl

@esa : v(ﬂ) Libre Space -Fouhdétion satN«Gs =

SatNOGS in a nutshell

= Ground Stations Network

= Modular setup

= SDR based RF

= Complete open source stack

= VHF/UHF, L-Band, S-Band
(expanding to X-band)

SDR / HWRadio

55“!'&%%

SatNOGS-COMMS transceiver

= Co-funded by LSF and ESA

= UHF and S-Band dedicated
transceivers

= STM32H7 main MCU
= ZYNQ-7020 FPGA
= Suitable for LEO up to 600 km

= Fully open software and
hardware

= Seamless SatNOGS Network
integration

= Suitable for a wide range of
Cubesat missions 2

SatNOGS-COMMS

ransceiver

SatN@GS - - i

COMMS ¥0.3.2

299
883

o

RF Frontend

= UHF: 395 - 450 MHz

= S-Band:
= Rx: 2025 — 2110 MHz
= Tx: 2200 — 2290 MHz
= Radio amateur bands support upon request

= Tx Power: 26 - 32 dBm (1 dB step)
= SFCG 21-2R4 compliant emissions

= Low noise figure (1.4 dB)

RF Frontend: UHF

Load
RXEN Switch

. 7S R

RF Filter

Resistive
Taps | YOA

Transceiver REPOS & RF Power D/A| < E
Absalute Maximum Detectors 0AGCEN 5
iput RF lovel: +10d8m, AGC |oAD-
Input R lovel: +100Bm

* Must be connected in MCU
‘and FPGA.

Pin: -1(33-34)dBm
Pout: -26(-1-25)dBm

RF Frontend: S-Band

R

RE Filler RE Filer RF Fiter

MIXEREN

5050

=

RF Power 0 DA

00MHz
Detecior -0AGC-E! BUA0oMH
AGC o AD:

Aosoute Mamum 2 —
Input RF lovel: +1006m {5 %S ”
H /_/& Fo2310MHz Fo: 2250MHz

RE Fiter

Absolute Maximum
Input RF level: +15d8m « Must be connected in MCU P —
and FPGA

S-Band
PABypass

10 Interfaces

= 2x CAN-2.0

= 1x SPI up to 8 Mbps
= 1x 12C

= 3x UART

= 1x RGMII Ethernet

= 2X antenna deployment

COMMS ¥0.3.2

interfaces O e SatNGGS - fj%i .

= Reference clock and PPS inputs

= PC/104

Missions: Curium-1 on Ariane 6!

T
----IIII T

1
1

www.camras.nl/blog/2024/satelliet-curium-one-gezien-vanuit-dwingeloo

www.camras.nl/blog/2024/satelliet-curium-one-gezien-vanuit-dwingeloo

Missions: PHASMA LAMARR & DIRAC

= SatNOGS-COMMS will be used in
PHASMA , a 2x 3U Cubesat mission
for spectrum monitoring

= One board for OBC/TC&C, another
for spectrum monitoring

= Q3 2025, on Transporter-15

Onboard Software

libsatnogs-comms

Peripherals Control

Radio

AT86RF215 Driver

RFFCO7x Driver

Zephyr-RTOS B:
P yr. Ol = C++ Abstraction Layer o
Firmware r
Power

Sensors

=

Onboard Software: libsatnogs-comms

= Platform-agnostic

= Available as CMake
interface library

s C+4++17 everywhere!

= Abstract interface based
on pure virtual methods
for platform specific
operations

class gpio

public
enun class direction : uint8_t

INPUT = 0
OUTPUT = 1

gpio(direction dir = direction::INPUT

gbrief Toggles the GPT
Ha effect if it

virtual
toggle

virtual
get

11

Onboard Software: Zephyr-RTOS

But why?
= Modern
= Huge community
= Actively developed
= Modular
= Large number of modules
= CMake

= Devicetree (please don't shoot me!)

12

Onboard Software: Zephyr-RTOS

Zephyr-RTOS Components in use
ADC DAC GPIO
UART Async SPI i2c
retention sensors emmc & disk access
GNSS settings RTC

hwinfo console nanopb
LittleFS Task Watchdog CAN & ISOTP
sysbuild MCUBoot with XIP twister

And many more!

13

Devicetree

—

= Support multiple hardware versions as n = e
evicetre

development progresses
FOR

= Customization options for different DUMMIES

missions though overlays

THEREIS
= Together with the libsatnogs-comms o —— NO SUCH THING!
. . for th
abstraction layer, provides a bulletproof Rest of Us!

FREE eTips at dummies.com"

code base even if the SoC changes

14

Devicetree

Currently we support more than 30 different configurations for various 10
interfaces and subsystems that a satellite mission may require with ZERO
code modifications!

Overlay Functionality

Include this overlay to enable logging on the UART port labeled as UART_A on the board, which corresponds to
USART1 in the STM32 pinout

Include this overlay to enable logging on the UART port labeled as UART_B on the board, which corresponds to
USART1 in the STM32 pinout

Repurposes the SPLA to a logging UART port. The SPIA_CLK pin will be configured as TX and the SPI_A_MISO as
RX. In the STM32 pinout this UART port will correspond to USART3

Include this overiay to use the UART port labeled as UART_A on the PC104, for the GNSS data source
Include this overlay to use the UART port labeled as UART_B on the PC104, for the GNSS data source
Include this overlay to use the UART port labeled as UART_C on the PC104, for the GNSS data source
Include this overlay to use GPIO antenna deployment mechanism for the UHF antenna, using the ANT_DEP_A and
ANT_DET_A pins on the dedicated connector
Include this overlay to use GPIO antenna deployment mechanism for the S-Band, using the ANT_DEP_B and
ANT_DET_B pins on the dedicated connector 2

’https://librespacefoundation.gitlab.io/satnogs-comms/
satnogs-comms-software-mcu/group__customization.html

15

https://librespacefoundation.gitlab.io/satnogs-comms/satnogs-comms-software-mcu/group__customization.html
https://librespacefoundation.gitlab.io/satnogs-comms/satnogs-comms-software-mcu/group__customization.html

C++. This is the way!

The use of C++ contributes significantly towards a reliable system that
must operate unattended

= Better code organization through polymorphism
= Safer abstraction layers (no need for weak or function pointers)

= RAIIl (Resource allocation is initialization) idiom

{
() { irg_disable(); }

&5 () { irg_enable(); }

16

C++. This is the way!

= References instead of pointers
= Template metaprogramming FTW!
= Readable and maintainable compile time checks through constexpr

= Exceptions instead of error codes

17

C++. This is the way?

Challenges?

= STL and dynamic memory allocation -> No go for space!
= RTTI is not an option for the majority of embedded devices

= Even exceptions in not an option for flash limited devices

18

What about the STL?
od

19

etlcpp to the rescue!

= etlcpp is an STL-like library that makes 0 dynamic memory allocation
= Maximum memory is known at compile time

= No RTTI

= Fully templated

= STL API compatible

= Multiple available approaches for error handling

= Exceptions
= Error codes
= ghosting

= https://www.etlcpp.com

20

https://www.etlcpp.com

Error handli

= Error identification and recovery
is one of the most critical
aspects of a satellite software

= Errors should be also logged for
the operator to be able to
troubleshoot from ground

aSTC-41C repair mission of Solar Max
satellite, 1984

21

Error handli

= std::exception
= Unified error/logging system

= 4 different backends:
= SWO
= Ring buffer
= eMMC storage
= BACKUP_SRAM

= Exceptions of different severity level

class exception : public etl::exception

public

enum class se

CATASTRO!
CRITICAL
MAJOR
MINOR 3
NONE =

22

Error handling

» @brief i2c I0 or timeout exception * @brief Exc ir tin c exception of the \ref radio s
* @note This exception * @note This exception iseverity::MAJOR severity

* @ingroup exceptions * @ingroup exceptions
class i2c_bsp_exception : public satnogs::comms::exception

1as exception::s

class radio_exception : public exception

public
radio_exception(string_type file_name, numeric_type line)
exception(file_name, line,
error_msg{exception: :severity::MAJOR, "Radio error",
“radioerr”, ERADIO})

[
public
2c_bsp_exception(string_type file_name, numeric_type line)
exception(
file_name, line,
error_msg{exception::severity::MINOR, "i2c error", "i2cerr", EI2C}

void
io0::sband_tx_thread(void *argl, void *arg2, void *arg3)
{

{

task_wdt_id = task_wdt_add(CONFIG_WATCHDOG_PERIOD_RADIO_TX,
task_wdt_callback, (void *)k_current_get());

auto &radio = sc::board::get_instance().radio();

msg_arbiter &arb = msg_arbiter::get_instance();

int

while (1) {

* Do stuff e.g TX, set frequency, etc

*/

} catch (const sc::exception &e) {
auto &err = error_handler::get_instance();
err.handle(e);

// Handle any other exception

} catch (const std::exception &e) {
auto &err = error_handler::get_instance();
err.handle(e);

Error handling

error_handler: :handle(const satnogs::comms::exception &

logle):
switch (e. rerity
case ception
case sc::exception
system_reboot
break;
case SC:ie y: :MAJOR
i L = e.get_errno

= e.get_errno

JOR_ERRORS

24

max_elems + 1; i++

i)
vector_exception Ge

Took 25 ticks Took 24 ticks!

i < max_elems + 1; i++) { for (size t i = 0; i < max_elems + 100; i++
- try |
v.push_back(1); v.push_back(i);
} catch (etl::vector_exception &e } catch (etl::vector_exception fe

Took 24 ticks Took 94 ticks!

i < max_elems + 1; i

v.push_back(i);
} catch (efl::vector full e

catch (etl::vector_out_of_bounds &

Took 24 ticks!
25

» #satnogs-comms:matrix.org

» gitlab.com/librespacefoundation/satnogs-comms

» https://libre.space

= info@libre.space

See you at the booth!
Come and visit our booth at K Level 2!

Swag available!

26

#satnogs-comms:matrix.org
gitlab.com/librespacefoundation/satnogs-comms
https://libre.space
info@libre.space

