
Testing Support for Multiple
Authentication Methods in

ClickHouse® Using Combinatorics
and Behavioral Models

Altinity

https://fosdem.org/2025/schedule/event/fosdem-2025-6027-testing-support-for-multiple-authentication-methods-in-clickhouse-using-combinatorics-and-behavioral-models/
https://fosdem.org/2025/schedule/event/fosdem-2025-6027-testing-support-for-multiple-authentication-methods-in-clickhouse-using-combinatorics-and-behavioral-models/
https://fosdem.org/2025/schedule/event/fosdem-2025-6027-testing-support-for-multiple-authentication-methods-in-clickhouse-using-combinatorics-and-behavioral-models/
https://fosdem.org/2025/schedule/event/fosdem-2025-6027-testing-support-for-multiple-authentication-methods-in-clickhouse-using-combinatorics-and-behavioral-models/

About me
QA Engineer for ClickHouse®, Altinity

M.Sc. in Data Science, Ludwig Maximilian University of Munich (2024-2026)
B.Sc. in Applied Mathematics and Computer Science, Moscow State
University (2019-2023)

LinkedIn: Alsu Giliazova
https://www.linkedin.com/in/alsugiliazova/

About Altinity
Provides managed services and support for ClickHouse®, develops
features for ClickHouse® and runs other open-source projects such
as:

Kubernetes operator for ClickHouse®
Altinity Stable Builds for ClickHouse®
Altinity Backup for ClickHouse®
Altinity Grafana Plugin for ClickHouse®
Altinity Regression Test Suite for ClickHouse®

altinity.com/slack

Join our Slack
community!

ClickHouse®
An open-source, columnar database designed for real-time analytics
Known for its blazing-fast performance
Handles large volumes of data efficiently, perfect for real-time use cases
Highly scalable, suitable for both small projects and enterprise systems
Widely used across industries for user behavior tracking, financial analytics, and monitoring systems
Offers flexibility and control with open-source

The Feature: Multiple Authentication Methods
A recent addition to ClickHouse® by Altinity for better security and flexibility
Allows a user to have multiple authentication methods, either of the same type or of different types

name String

id UUID

auth_type Enum8

auth_params String (JSON format)

... ...

Multiple Authentication Methods Feature

CREATE USER name1 IDENTIFIED WITH plaintext_password BY 'my_password'

CREATE USER name2 IDENTIFIED WITH plaintext_password BY '1', bcrypt_password BY '2', plaintext_password BY '3'

Before:

Now:

CREATE USER statement

name String

id UUID

auth_type Array(Enum8)

auth_params Array(String)

... ...

Before: After:

ALTER USER name1 IDENTIFIED WITH plaintext_password BY 'another_password'Before:
ALTER USER name2 IDENTIFIED WITH plaintext_password BY '4', bcrypt_password BY '5'Now:

1. ALTER USER IDENTIFIED WITH statement

ALTER USER statement

2. ALTER USER ADD IDENTIFIED WITH statement
ALTER USER name2 ADD IDENTIFIED WITH plaintext_password BY '6', bcrypt_password BY '7'

3. ALTER USER RESET AUTHENTICATION METHODS TO NEW statement
ALTER USER name2 RESET AUTHENTICATION METHODS TO NEW

VALID UNTIL clause
ALTER USER name1 IDENTIFIED WITH plaintext_password BY 'some_password' VALID UNTIL '2026-01-01'
ALTER USER name2 IDENTIFIED WITH plaintext_password BY '1' VALID UNTIL '2026-01-01',
bcrypt_password BY '7' VALID UNTIL '2029-01-01'
ALTER USER name2 VALID UNTIL '2027-01-01'

Multiple Authentication Methods Feature

ALTER USER Bob ADD IDENTIFIED WITH
plaintext_password BY '6', bcrypt_password BY '7'

Example
CREATE USER Bob IDENTIFIED WITH plaintext_password BY
'1', bcrypt_password BY '2', plaintext_password BY '3'

ALTER USER Bob IDENTIFIED WITH plaintext_password BY
'4', bcrypt_password BY '5'

ALTER USER Bob RESET AUTHENTICATION METHODS TO
NEW

Created user bob with
three authentication

methods, Bob can login to
clickhouse server with

passwords ‘1’, ‘2’ and ‘3’

Changed Bob’s
authentication methods,

now Bob can only login with
passwords ‘4’ and ‘5’

Added two new
authentication methods to
Bob, now he can login with

passwords ‘4’, ‘5’, ‘6’ and ‘7’

Reset Bob’s authentication
methods to the most

recently added one, Bob can
login only with password ‘7’

What is combinatorial testing?
Variable A = {A1, A2}

Variable B = {B1, B2}

Variable C = {C1, C2}

A1 A2

B1 B2 B1 B2

C1 C2 C1 C1 C1C2 C2 C2

A

B

C

Test cases: {(A1,B1,C1), (A1,B1,C2), (A1,B2,C1), (A1,B2,C2), ...}

 Software under
testing

Getting
expected result

of a test

Compare

Test Oracle

Test Oracle Problem

Test
case

Result of
test: passed
or failed

? ? ?

Automated Oracles1.
Human-Based Oracles2.
Hybrid Approach3.

Defining user actions
What are the possible actions that user can perform with the feature?

Create user with multiple authentication methods1.
Change user’s authentication methods2.
Add new authentication methods to user3.
Reset user’s authentication methods to the most recently added method4.
Drop user5.

Action 1 Action 2 Action 3 Action 4

Validation should be performed after each action to ensure the correctness of
the entire sequence of operations!

Calculating the Number of Combinations
Assumptions for the sake of simplicity in this explanation:

A user can have no more than two authentication methods assigned or changed per action1.
The two authentication methods can only be selected from the following 5 types:2.

no_password
plaintext_password BY ‘some_password’
sha256_hash BY 'hash' SALT 'salt'
bcrypt_hash BY 'hash'
double_sha1_hash BY 'hash'

CREATE USER BOB IDENTIFIED WITH ______

CREATE USER BOB IDENTIFIED WITH ______ , ______

5 ways

Note: 5! = 1*2*3*4*5; 3!=1*2*3; 2!=1*2

C(n,r)=n!/(r!*(n−r)!) = 5!/(3!*2!) = 10 ways

There are 15 ways to create a user, with each user having no more than 2 auth
methods, and each auth method being selected from the 5 available types.

ALTER USER BOB IDENTIFIED WITH ______
ALTER USER BOB IDENTIFIED WITH ______ , ______

Calculating the Number of Combinations

ALTER USER BOB ADD IDENTIFIED WITH ______
ALTER USER BOB ADD IDENTIFIED WITH ______ , ______

15 ways

15 ways

ALTER USER BOB RESET AUTHENTICATION METHODS TO NEW 1 way

So we have 31 different ways of changing user’s authentication methods
with ALTER USER statement.

Determining the Minimum Number of Calls
User was created1.
Authentication methods were changed 2.
New authentication methods were added3.
Authentication methods were reset4.

Create Alter Alter Alter

15 ways 31 ways 31 ways 31 ways

The total number of combinations: 15 * 31 *31 *31 = 446865

Efficient coverage without unnecessary complexity!

Create Alter Alter Alter

Sketching a Combinatorial Test

CREATE USER Bob
IDENTIFIED WITH ...

ALTER USER Bob ADD
IDENTIFIED WITH ...

ALTER USER Bob
IDENTIFIED WITH ...

ALTER USER Bob ADD
IDENTIFIED WITH ...

Try to login
with auth methods

seen in create query

Try to login
with auth methods
seen in create and

first alter query

Try to login
with auth methods
seen in all previous

queries

Try to login
with auth methods
seen in all previous

queries

CREATE
USER query
constructor

Alter user
action

Create
user action

Login to
Clickhouse

server

Behavior
model

Query
Username
Identification methods
Add Identified
Reset to new
Exit code
Output message
Errored (True or False)
Connection options

Behaviour State

Create
state

Alter
state

Login
state

Alter
state

Login
state

...

Behaviour"SELECT current_user()" | clickhouse client ---user "user1" --password "foo1"

Computes the expected
exit code and output

message based on the
current state and

behavior, then
compares them with the

actual exit code and
output message stored

in the state

Connection options
User: user1

Password: foo1

ALTER
USER query
constructor

Sketching a Combinatorial Test

.comopen-source software testing framework
testflows

Python open-source testing framework that allows you to write test programs, not just tests.
Supports advanced behavioral, parallel, combinatorial, and requirements-driven testing. Used
in testing ClickHouse®, Altinity.Cloud web UI, Graphana plugin, API services, Terraform
provider, and more.

https://testflows.com/

TestFlows website

https://testflows.com/

CREATE USER query constructor

1. Creating an instance of
CreateUser class
query = CreateUser()

CREATE USER

2. Call set_username method
query.set_username(“Bob”)

CREATE USER Bob

3. Call set_identified method
query.set_identified()

CREATE USER Bob
IDENTIFIED

4. Call set_with_no_password
method
query.set_with_no_password()

CREATE USER Bob IDENTIFIED
WITH no_password

self.query

No exceptions in
output and exitcode=0

All possible expected outputs:
"NO_PASSWORD" cannot be used in an ADD
IDENTIFIED statement

1.

A non-existing user cannot be altered2.
"NO_PASSWORD" cannot be used with another
authentication method

3.

The wrong password was used to log in with the
specified username

4.

No exceptions; the query is valid, and the exit code is 05.

Model Definition

Test Definition

Query
Username
Identification methods
Add Identified
Reset to new
Exit code
Output message
Errored (True or False)
Connection options

Behaviour State
combinations are

executed in parallel
using a pool of threads

ALTER USER Bob ADD IDENTIFIED WITH plaintext_password BY '4', bcrypt_password BY '5', NO_PASSWORD;
Here: current.add_identification = [”plaintext_password”, “bcrypt_password”, “no_password”]

Expect Methods of the Model

ALTER USER Bob ADD IDENTIFIED WITH plaintext_password BY '1', bcrypt_password BY '2';
Here: current.add_identification = [”plaintext_password”, “bcrypt_password”]

Code: 62. DB::Exception: Syntax error: failed at position 87 ('NO_PASSWORD'):
NO_PASSWORD;. Expected one of: PLAINTEXT_PASSWORD, SHA256_PASSWORD,

DOUBLE_SHA1_PASSWORD, LDAP, KERBEROS, SSL_CERTIFICATE,
BCRYPT_PASSWORD, SSH_KEY, HTTP, JWT, SHA256_HASH, DOUBLE_SHA1_HASH,

BCRYPT_HASH, BY, end of query. (SYNTAX_ERROR)

Query
Username
Identification methods
Add Identified
Reset to new
Exit code
Output message
Errored (True or False)
Connection options

Behaviour State

Create
state

Alter
state

Login
state

Alter
state

Login
state

...

Behaviour

CREATE USER Bob IDENTIFIED WITH plaintext_password
BY '1', NO_PASSWORD

ALTER USER Bob IDENTIFIED WITH plaintext_password BY
'4', bcrypt_password BY '5', NO_PASSWORD;

Issues Found by Combinatorics
The VALID UNTIL clause didn’t work correctly with bcrypt_password; I was able to log in
to ClickHouse with an expired password
Using NOT IDENTIFIED with the VALID UNTIL clause in a single query threw an
unexpected exception message, which should not have happened
In some configuration, I could not log in with a valid password using the sha256_hash
authentication method
There were issues logging in on one cluster when the user was created with the ON
CLUSTER clause on another cluster

The full test code is available here:

Thank you for your time!
I’m happy to answer any questions!

altinity.com/slack LinkedIn: Alsu Giliazova
https://www.linkedin.com/in/alsugiliazova/

Join our Slack community!

