-GO

FOSDEM Go Devroom, February 2025

Swiss Maps

Bryan Boreham

Grafana Labs

: M @bboreham@grafana.social
. ﬁ / @bboreham bsky.social

#

Overview Who am |?

What am | talking about?

8O-

A0,

SN When does it not work?

Why am | talking about this?

How does it work?

'Swiss Map" Is a new map
implementation in Go 1.24

#

Hi, I'm Bryan Boreham

| work at 15 Grafana Labs, mostly on:

Q “'\QQ‘ \\\\\-—- ?

Prometheus Mimir loki Tempo

#

My inspiration for this talk

@Eppcnn | 2019

The C++ Conference cpoconorg

Abseil's Open Source
Hashtables: 2 Years In

#
https://www.youtube.com/watch?v=JZE3_0qvrMg

A Go map

Construct: m := map[string]int{}
Insert: m["route"] = 66

Lookup: v = m[k]

Delete: delete(m, k)
Iterate: for k, v := range m
Size: len(m)

#

Classical hash map with chaining

Buckets
K
0

1 - K V - K Vv %]
64 bit number —— 2

3

4 K Vv %}

5

6

7

This is called "open hashing"

#

Classical hash map with probing

L

This is called "closed hashing"

#

Closed Hashing

#

#

Go 1.23 map (before Swiss Maps)

Map header Buckets

metadata

K|l K|K
VIV |V

overflow

AN

#

Go 1.24 map (Swiss Map)

Map hdr Directory Table (buckets)

metadata

KIV| K|V | K|V

#

What was that metadata?

#

Go 1.24 map: more detail

K 2 55 bits 7
example, . 3
size of . Directory Table (buckets)
directory R ;

can vary

#

How Does It Perform?

#

Speed: mapl[int64]int64 Lookup - Hit

@® Go123 @ Gol.24

50
40

30

ns/op

20

10 100 1,000 10,000 100,000 1,000,000 10,000,000

Number of elements

BenchmarkMapAccessHit, on Intel® Core™ i7-14700K

Lower is better

#

Running Prometheus with 6M series

Allocations

256 MiB

192 MiB 2

128 MiB /\ § « /.\ - " -
VIR L AnAAAAAAA

-
0B 0
01:00 02:00 03:00 04:00 05:00 06:00 : 01:00 02:00 03:00 04:00 05:00

== test-main - Allocated Bytes/s == test-pr-15707 - Allocated Bytes/s == test-main - 5m rate == test-pr-15707 - 5m rate

Memory Avg HTTP request latency

24 GiB | . |

‘\; 'k.l
500 ms “ Wl .(’m‘f;.{\‘)
‘m\jr"«‘([jﬂ‘ JOY
Os — —

0B 01:00 02:00 03:00 04:00 05:00 06:00
01:00 02:00 03:00 04:00 05:00 06:00 : == test-main - /api/vi/query == test-pr-15707 - /api/vi/query
== test-main - RSS == test-pr-15707 - RSS == test-main - Next GC == test-main - /api/vl/query_range == test-pr-15707 - /api/v1/query_range
== test-pr-15707 - Next GC test-main - Allocated == test-pr-15707 - Allocated test-main - /metrics == test-pr-15707 - /metrics

#

Bucket metadata

Metadata
h2

57 bits| 7

&y

Not to scale

#

Control word has 1 byte per element

Metadata
h2/h2(h2| -

550

(0b10000000 means empty)

#

Example: finding an element

Metadata from bucket (0b10000000 == 0x80 is empty)
42 | 03|05(80|80|80|80|80

Key to find, multiplied by 0x0101010101010101
03|/03|{03{03[{03|[03|03|03

Xor
41|/00|/06|83|83/83(83|83

Subtract 0x0101010101010101 then AND with NOT
3E|FF|[01/00(00|00|00|00

Mask top bit
00|10 |00 |00 |00 |00 |00 |00

Watch carefully.

#

Compiled code

const | 5 FUNCDATA $6, command-line-argun
bitsetLSB = 0x0101010101010101 6 PCDATA $3, $1
bitsetMSB = 0x8080808080808080 7 MOVQ $72340172838076673, CX
) 8 IMULQ BX, CX
L] 9 XORQ CX, AX
func ctrlGroupMatchH2 (g ctrlGroup, h uintptr) bitset { 10 MOVQ $-72340172838076673, CX
v := uint64(g) ~ (bitsetLSB * uint64(h)) 11 ADDQ AX, CX
return bitset(((v - bitsetLSB) &" v) & bitsetMSB) 12 NOTQ AX
} 13 ANDQ CX, AX
14 MOVQ $-9187201950435737472, CX
15 ANDQ CX, AX

16 RET

#
https://godbolt.org/z/KE88ccKGz

SIMD?

#

Single Instruction Single Data

%. &

Instructions “l | <><> Data

Results

#

Single Instruction Multiple Data

%, SO

| Q
Instructions “ I |<><><<i<><>Data

Results

#

GOAMDG64=v3 code generated

*

(gdb) disassemble <internal/runtime/maps.ctrlGroupMatchH2>
mov(q %rcx, %xmmo
pshufb %xmm15, %xmmo
mov(q %rsi, %xmmT
pcmpegb %xmm1, %Xxmmo

pmovmskb %xmm@, %esi

* actually this is inlined

#

.../cmd/compile/internal/ssagen/intrinsics.go ~

addF("internal/runtime/maps", "ctrlGroupMatchH2",

[...]
if buildcfg.GOAMD64 >= 2 {
// Broadcast h2 into each byte of a word.
broadcast := s.newValuel(ssa.OpAMD64PSHUFBbroadcast, types.TypeInt128, hfp)
// Compare each byte of the control word with h2.
eq := s.newValue2(ssa.OpAMD64PCMPEQB, types.TypeInt128, broadcast, gfp)
// Mask: each output bit is equal to the sign bit each input byte.
out := s.newValuel(ssa.OpAMD64PMOVMSKB, types.Types[types.TUINT16], eq)

* edited to fit slide

#

Finding an element, SIMD version

Metadata from bucket (0b10000000 == 0x80 is empty)
42 | 03|05(80|80|80|80|80

pshufb %xmm15, %xmmo
03[03[{03[{03|03|03|03|03

pcmpegb %xmm1, %xmme
00| 1 |{00|00|00|00|00|00

pmovmskb %xmmO, %esi
00|00 |00 |00 |00 |00 |00 |02

____—0b00000070

#

Back to the benchmarks

#

Memory size: with make(map[int64]int64)

MB

Lower is better

40

30

20

10

== Go01.23map == Go1.24 map

e

100,000

200,000

length

300,000

400,000

#

Go 1.23 map (recap)

Map header Buckets

e

metadata

K| K

\Y

verflow <

AN

#

Memory size: with make(map[int64]struct{})

== G01.23map == Go1.24 map
20

15

10

5 /S

0 100000 200000 300000 400000

MB

length

Lower is better

#

O golang / go Q Type (7] to search

<> Code (lIssues 5k+ 1% Pullrequests 511 &3 Discussions (& Actions [Projects 4 [wiki © Secur

runtime: mapl[int64]struct{} requires 16 bytes per slot #/1368

O prattmic opened 2 days ago cee

With swissmaps in 1.24, a map[int64]struct{} requires 16 bytes of space per slot, rather than the expected 8 bytes.

This is an unfortunate side effect of the way the storage is defined internally
https://cs.opensource.google/go/go/+/master:src/cmd/compile/internal/reflectdata/map_swiss.go;1=30

// type group struct { |'_|;]
// ctrl uintea

1/ slots [abi.SwissMapGroupSlots]struct {

1/ key keyType

/! elem elemType

// %

/1}

elemType is struct{} . The struct size rules in the compiler say that if struct ends in a zero-size type, that field is given 1
byte of space (in case someone creates a pointer to the last field, we don't want that to point past the end of allocation).
Then, keyType needs 8-byte alignment, so the last field actually ends up using a full 8-bytes.

https://go.dev/issue/71368

#
https://go.dev/issue/71368

Unsafe access (reflect2, json-iterator, ...)

= 0 modern-go / reflect2 Q|| 8

<> Code () Issues 16 19 Pullrequests 4 ® Actions [Projects @ Security |22 &

needs maps fix for go1.24 #32

g i 7 randall77 opened last week

The map implementation changed in go1.24 and it broke this library. See golang/go#71408 for
an example. That breakage is a hard break, but there may be much more subtle problems that
just cause GC to collect reachable objects.

(This library uses unsafe and linkname to get at the runtime internals.)

| think the immediate problem is the definition of hiter has changed. On 32-bit
implementations in particular, the new hiter is larger, which will cause stack corruption. But for
all architectures, the pointer bitmap of the new hiter is different, which will cause the GC to do
the wrong thing.

#

Credit for Swiss Maps goes to

Alkis Evlogimenos Michael Pratt
Jeff Dean Keith Randall
Jeffrey Lim Cherry Mui
Matt Kulukundis ZhangYunHao
Roman Perepelitsa thepudds
Sam Benzaquen Peter Mattis

Sanjay Ghemawat
Shaindel Schwartz ...plus more, I'm sure

(not to me)

#

Questions?

Links:
https://abseil.io/about/design/swisstables

Videos:
GopherCon 2016: Inside the Map Implementation - Keith Randall

CppCon 2017: Designing a Fast, Efficient, Cache-friendly Hash Table - Matt

Kulukundis

Swiss Guard by Mary Pollard; running Gopher by Ramya Anand.
Original Gopher design by Renee French.

M @bboreham@grafana.social @bboreham.bsky.social

#
https://abseil.io/about/design/swisstables
https://youtu.be/Tl7mi9QmLns
https://www.youtube.com/watch?v=ncHmEUmJZf4
https://www.youtube.com/watch?v=ncHmEUmJZf4

Memory size: with make(map[int64]int64, size)

== Go01.23map == Go1.24map == Slice
25

20

15

MB

10

0 100,000 200,000 300,000 400,000

length

Measured using Go runtime profiler.

Lower is better

#

Memory size: make(map[int64]int64, 4194304)

== Go01.23map == Go1.24 map

2,500
2,000

1,500

MB

1,000

500

10 100 1,000 10,000 100,000 1,000,000 10,000,000

length

Lower is better

#

Speed: map[int64]int64 Miss: make(map[int64]int64, 4M)~

® Go123 @ Gol.24

40
30
& 20
2
10
S
B—O——
0
10 100 1,000 10,000 100,000 1,000,000 10,000,000

Number of elements

Lower is better

#

CPU Memory Architecture

Level 3

Cache

Level 2
Cache

(Not to scale)

#

Requirements of a map

In the Go specification:

A map is an unordered group of elements of one type, called the element type, indexed by a set of
unique keys of another type, called the key type. - https://go.dev/ref/spec

In the Go blog:

"in general they offer fast lookups, adds, and deletes" - https://go.dev/blog/maps

#
https://go.dev/ref/spec
https://go.dev/blog/maps

Special features of Go maps

Can't take the address of an element.

"For an operand x of type T, the address operation &x generates a pointer of type *T to x. The operand must be
addressable, that is, either a variable, pointer indirection, or slice indexing operation; or a field selector of an addressable
struct operand; or an array indexing operation of an addressable array."

Can modify the map during iteration.

"If a map entry that has not yet been reached is removed during iteration, the corresponding iteration value will
not be produced. If a map entry is created during iteration, that entry may be produced during the iteration or may
be skipped."

Quoting https://go.dev/ref/spec

#
https://go.dev/ref/spec

Special features of Go maps

Can't provide your own hash function.
Can't take the address of an element.
Can modify the map during iteration.

Quoting https://go.dev/ref/spec

#
https://go.dev/ref/spec

