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Agenda
● Why do we need IaC

● How to choose the Right IaC Tool

● Organization's IaC Maturity

● Unified DevOps Process
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The Rise of IaC
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The IaC Tooling Challenge
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● Security and Compliance

● Scale and Performance

● Learning Curve and Adoption

Choosing the Right IaC Tool



IaC 
Battleground



IaC Battleground



IaC Battleground - Round 1

● Industry standard
● Cloud agnostic
● Large community and ecosystem
● Modular & reusable
● DSL declarative language 

(HCL/JSON)
● Performance & scalability
● State file management
● Vendor lock-in to HashiCorp



IaC Battleground - Round 1

● Maintained by vendor
● No state management
● Built in Drift Detection and GitOps 

flows
● Verbose Syntax (JSON/YAML)
● Performance & scalability
● AWS lock-in
● Limited modularity

AWS CloudFormation

● Industry standard
● Cloud agnostic
● Large community and ecosystem
● Modular & reusable
● DSL declarative language 

(HCL/JSON)
● Performance & scalability
● State file management
● Vendor lock-in to HashiCorp



IaC Battleground - Round 2

● Cloud-agnostic 
● State management options
● Code reusability & modularity
● Language familiarity (TypeScript, 

Python, Go & more)
● Community size and support
● Performance on large 

deployments
● Easy to over complex your IaC



IaC Battleground - Round 2

● Cloud-agnostic 
● State management options
● Code reusability & modularity
● Language familiarity (TypeScript, 

Python, Go & more)
● Community size and support
● Performance on large 

deployments
● Easy to over complex your IaC

● Drop-in replacement for Terraform
● True open source by Linux Foundation
● Extensive ecosystem
● State handling capabilities
● DSL declarative language (HCL/JSON)
● Performance & scalability
● Relatively new and smaller (but 

growing) community



IaC Battleground - Round 3

● Configuration using YAML
● Agentless
● Large community & prebuilt roles
● No state management



IaC Battleground - Round 3

● Server-client configuration
● Highly scalable & fast execution
● Utilizes state for configuration 

management
● Agent maintenance and updates
● Unknowns following 

VMware/Broadcom acquisitions 

● Configuration using YAML
● Agentless
● Large community & prebuilt roles
● No state management



IaC Battleground

So… who won?



 

● Potential benefits of using a combination of IaC 

tools:

○ Leverage strengths of each IaC type

○ Address diverse requirements (cloud-native, 

traditional, legacy)

○ Facilitate migration and integration strategies

● Consider in-house scripting for specific needs but it 

requires maintenance.

The Multi-Tool Approach



Understanding Your Organization's IaC Maturity

 Automation

 Managed Self-Service

 Cost Controls

Governance

ClickOps

Productivity
Scripting,

Generic CI/CD
Managed 

Self-Service
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 Governance



Unified DevOps Process

 
Write code 

Terraform OpenTofu
 

CI/CD

Linting Testing Planing

Infracost Checkov

 Logs / 
Monitoring 

Approval based on 
the CI/CD output

OPA

 
Push the 
code to VCS

GitHub GitLab

 Apply



● Automatically scan for misconfigurations 

● Identify security vulnerabilities before 

deployment

● Ensure compliance with industry 

standards and internal policies

Static Code Analysis



● Understand IaC updates on cost before deployment

● Shift cost mindset left

● Include cost as part of approval flows

Cost Estimation



Policy-as-Code
● Codify organizational policies

● Reduce risk and human error when validating 

code, plans, and outputs

● Reduce bottleneck of human approval



● No single "best" IaC tool for all scenarios

● The "winner" depends on your organization's:

○ Maturity Level

○ Technology Stack

○ Use Cases and Requirements

● Adopt a strategic and adaptable approach

In Summary



Questions?

Thank you!


