
Ronny Orot
Software Engineer at env0
OpenTofu core team member

The IaC Tooling
Face-off for Modern
Cloud Native Ops

Agenda
● Why do we need IaC

● How to choose the Right IaC Tool

● Organization's IaC Maturity

● Unified DevOps Process

Application Have Grown More Complex

Then Now

2520151000

Waterfall to Agile

Monolith to Microservices

Cloud Computing

05

DevOps

IaC

standart popular

popular standart

Puppet Chef Terraform standart

popular

popular standart

standart

After Y2K

The Rise of IaC

Then Now

1993

2009

2005

2010

2010

2011

2011

2012

2013

2013

2014

2014

2015

2017

2020

2023

The IaC Tooling Challenge

Today
2024

● Security and Compliance

● Scale and Performance

● Learning Curve and Adoption

Choosing the Right IaC Tool

IaC
Battleground

IaC Battleground

IaC Battleground - Round 1

● Industry standard
● Cloud agnostic
● Large community and ecosystem
● Modular & reusable
● DSL declarative language

(HCL/JSON)
● Performance & scalability
● State file management
● Vendor lock-in to HashiCorp

IaC Battleground - Round 1

● Maintained by vendor
● No state management
● Built in Drift Detection and GitOps

flows
● Verbose Syntax (JSON/YAML)
● Performance & scalability
● AWS lock-in
● Limited modularity

AWS CloudFormation

● Industry standard
● Cloud agnostic
● Large community and ecosystem
● Modular & reusable
● DSL declarative language

(HCL/JSON)
● Performance & scalability
● State file management
● Vendor lock-in to HashiCorp

IaC Battleground - Round 2

● Cloud-agnostic
● State management options
● Code reusability & modularity
● Language familiarity (TypeScript,

Python, Go & more)
● Community size and support
● Performance on large

deployments
● Easy to over complex your IaC

IaC Battleground - Round 2

● Cloud-agnostic
● State management options
● Code reusability & modularity
● Language familiarity (TypeScript,

Python, Go & more)
● Community size and support
● Performance on large

deployments
● Easy to over complex your IaC

● Drop-in replacement for Terraform
● True open source by Linux Foundation
● Extensive ecosystem
● State handling capabilities
● DSL declarative language (HCL/JSON)
● Performance & scalability
● Relatively new and smaller (but

growing) community

IaC Battleground - Round 3

● Configuration using YAML
● Agentless
● Large community & prebuilt roles
● No state management

IaC Battleground - Round 3

● Server-client configuration
● Highly scalable & fast execution
● Utilizes state for configuration

management
● Agent maintenance and updates
● Unknowns following

VMware/Broadcom acquisitions

● Configuration using YAML
● Agentless
● Large community & prebuilt roles
● No state management

IaC Battleground

So… who won?

● Potential benefits of using a combination of IaC

tools:

○ Leverage strengths of each IaC type

○ Address diverse requirements (cloud-native,

traditional, legacy)

○ Facilitate migration and integration strategies

● Consider in-house scripting for specific needs but it

requires maintenance.

The Multi-Tool Approach

Understanding Your Organization's IaC Maturity

 Automation

 Managed Self-Service

 Cost Controls

Governance

ClickOps

Productivity
Scripting,

Generic CI/CD
Managed

Self-Service
Manual
Deploys

 Governance

Unified DevOps Process

Write code

Terraform OpenTofu

CI/CD

Linting Testing Planing

Infracost Checkov

 Logs /
Monitoring

Approval based on
the CI/CD output

OPA

Push the
code to VCS

GitHub GitLab

 Apply

● Automatically scan for misconfigurations

● Identify security vulnerabilities before

deployment

● Ensure compliance with industry

standards and internal policies

Static Code Analysis

● Understand IaC updates on cost before deployment

● Shift cost mindset left

● Include cost as part of approval flows

Cost Estimation

Policy-as-Code
● Codify organizational policies

● Reduce risk and human error when validating

code, plans, and outputs

● Reduce bottleneck of human approval

● No single "best" IaC tool for all scenarios

● The "winner" depends on your organization's:

○ Maturity Level

○ Technology Stack

○ Use Cases and Requirements

● Adopt a strategic and adaptable approach

In Summary

Questions?

Thank you!

