
Co-funded by
The European Union

Cyber-Physical WebAssembly:
Interfacing with USB and I2C
Hardware
FOSDEM 2025

Dr. ing. Merlijn Sebrechts

Senior researcher @ imec
● Software delivery & trust in clouds and on devices

Lecturer @ Ghent University
● Systems Design
● Computer & Network Security
● Cloud

Open Source & Standardization
● Ubuntu Community Council
● Snapcrafters
● W3C WebAssembly System Interface (WASI)

2

merlijn.sebrechts.be/about

https://merlijn.sebrechts.be/about

Co-funded by
The European Union

WebAssembly for IoT Devices
Interfacing with USB and I2C Hardware

DEPARTMENT OF INFORMATION TECHNOLOGY
IDLab

Average lifespan of cars in
Europe is 30 years

4

? How do you update the
software on a car that uses
a compiler for Windows 95?

6

7

Very slowly..

Co-funded by
The European Union

WebAssembly and WASI for embedded?
Current advantages compared to native:

̶ Binary device portability across ISAs (Instruction Set Architectures) and platforms
̶ Support for more programming languages and language interoperability on

embedded devices
̶ Forward compatibility with newer application toolchains over multiple decades
̶ Secure and sandboxed execution of software, where other solutions like containers

do not fit

While still ensuring:

̶ Support for existing (pre-WebAssembly / pre-WASI) software
̶ Near-native efficiency in execution and compilation

10

Co-funded by
The European Union 11

Co-funded by
The European Union 12

Co-funded by
The European Union

Cyber-physical
WebAssembly
Connecting WebAssembly applications to hardware

Co-funded by
The European Union

Goals
̶ Making it possible to use WebAssembly for IoT

̶ Secure drivers: only access exactly what they need
○ Defend against supply-chain attacks by sandboxing third-party

drivers
○ Higher reliability and robustness by sandboxing components

̶ Portable drivers: any architecture, any platform
○ Support newer hardware on older platforms
○ “Write a driver once, run anywhere”

14

Cyber-physical WebAssembly
Hardware WASI interfaces & Componentized drivers

15

WebAssembly Runtime
(native)

Host Operating System I2C OS
stack

USB OS
stack

wasi-usb

App HAL Driver App

ACL security

Capability-based
security

Capability-based
security

wasi-i2c

Host Component Host Component

Co-funded by
The European Union 16

wasi-usb interface (phase 1)

Based on libusb (instead of WebUSB)
○ Close to hardware
○ Powerful
○ Compatible*

https://github.com/WebAssembly/wasi-usb/blob/main/wit/device.wit

https://github.com/WebAssembly/wasi-usb/blob/main/wit/device.wit

Co-funded by
The European Union 17

wasi-i2c interface (phase 2)

Based on embedded-hal
○ Close to hardware
○ Cross-platform (even Zephyr RTOS)
○ wasi-embedded-hal crate

https://github.com/WebAssembly/wasi-i2c/blob/main/wit/i2c.wit

https://github.com/WebAssembly/wasi-i2c/blob/main/wit/i2c.wit

18

Preprint (submitted to IEEE/IFIP NOMS 2025)
https://doi.org/10.48550/arXiv.2410.22919

https://doi.org/10.48550/arXiv.2410.22919

19

Latency to USB device: +0.007ms

20

USB throughput: -0.6%

Ongoing work at imec & Ghent University
● I2C WASI proposal: Phase 2

○ Proposal: https://github.com/WebAssembly/wasi-i2c
○ Implementation: https://github.com/idlab-discover/i2c-wasm-components
○ Collaboration with Siemens

● USB WASI proposal: Phase 1
○ Proposal: https://github.com/WebAssembly/wasi-usb
○ Implementation:

■ https://github.com/idlab-discover/usb-wasm
■ https://github.com/Wouter01/USB_WASI

● GPIO WASI proposal (in development)
○ Proposal: https://github.com/WebAssembly/wasi-digital-io
○ Implementation: https://github.com/emielvanseveren/gpio-wasm-components

● SPI WASI proposal (in development)
○ Proposal: https://github.com/WebAssembly/wasi-spi

21

https://github.com/WebAssembly/wasi-i2c
https://github.com/idlab-discover/i2c-wasm-components
https://github.com/WebAssembly/wasi-usb
https://github.com/idlab-discover/usb-wasm
https://github.com/Wouter01/USB_WASI
https://github.com/WebAssembly/wasi-digital-io
https://github.com/emielvanseveren/gpio-wasm-components
https://github.com/WebAssembly/wasi-spi

Co-funded by
The European Union 22

Demo time!

Cyber-physical WebAssembly
Xbox controller usb driver + pacman in wasm with wasi-usb

23

WebAssembly Runtime
(native)

Host Operating SystemI2C OS
stack

USB OS
stack

wasi-usb

App HAL Driver App

Capability-based
security

Capability-based
security

wasi-i2c

Host Component

Host Component

Co-funded by
The European Union

Q & A

Contact: merlijn.sebrechts@ugent.be
Follow: https://www.linkedin.com/in/merlijn-sebrechts/

24

Thanks to
Michiel Van Kenhove, Maximilian Seidler, Friedrich
Vandenberghe, Warre Dujardin, Wouter Hennen, Arne Vogel,
Merlijn Sebrechts, Tom Goethals, Filip De Turck, Bruno Volckaert

Valentin Olpp, Dan Gohman, Emiel Van Severen

Bytecode Alliance & W3C WASI subgroup

EU ELASTIC project (101139067) from Horizon Europe SNS JU

Co-funded by
The European Union

FAQ: WebAssembly vs Java runtime?
Many similarities both in design and use-cases

̶ “Write once, run anywhere”
̶ Architecture-independent bytecode
̶ JVM on microcontrollers: Johnson Controls heat pumps
̶ JVM in browser: Java Applets (vSphere web UI)

But ultimately, JVM failed in most of these fields. It remains a
single-vendor runtime for a single language family.

25

Co-funded by
The European Union

Why WebAssembly instead of JVM
WebAssembly learned from the 20+ years of JVM experience.

̶ Compilation target for all languages, standardized by W3C
○ JVM is too reliant on a single vendor and too focussed on a single language family
○ JVM is too opinionated about languages: e.g. requires classes and garbage collector

̶ Sandboxed by default with capability-based access to outside world
○ JVM apps have too much access to underlying OS, resulting in security and

portability nightmares.
○ JVM assumes all code is trusted

̶ Software delivery baked-in: Streamability, Hotplugging
○ JVM is too focussed on traditional applications consisting of a single, static,

monolithic app already on the user’s machine.

26

Co-funded by
The European Union

Gotcha #1: Language support

27

Language support varies, but improving rapidly

● Best supported
○ Rust
○ C, C++

● Some functionality doesn’t work
○ Python
○ Java
○ C#

● Important stdlib functionality doesn’t work
○ Go

Co-funded by
The European Union

Gotcha #2: Changing landscape of system interfaces

28

Which system interface is your compiler targeting?

○ emscriptem -> browser
○ wasip1 -> legacy WASI

■ many non-standard “dialects” like wasmer
○ wasip2 -> component model

Co-funded by
The European Union

Gotcha #3: Varying support of runtimes

29

Does your runtime support the system interfaces?

● Recommended
■ Wasmtime: wasip2 & Component Model
■ WAMR: wasip1

● Not recommended
■ Wasmer: non-standard toolchains & WASI
■ Wasmedge: super slow

Co-funded by
The European Union

Gotcha #4: Runtime performance

30

