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Average lifespan of cars in 
Europe is 30 years
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? How do you update the 
software on a car that uses 
a compiler for Windows 95?
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Very slowly..
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WebAssembly and WASI for embedded?
Current advantages compared to native:

̶ Binary device portability across ISAs (Instruction Set Architectures) and platforms
̶ Support for more programming languages and language interoperability on 

embedded devices
̶ Forward compatibility with newer application toolchains over multiple decades
̶ Secure and sandboxed execution of software, where other solutions like containers 

do not fit

While still ensuring:

̶ Support for existing (pre-WebAssembly / pre-WASI ) software
̶ Near-native efficiency in execution and compilation
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Cyber-physical 
WebAssembly
Connecting WebAssembly applications to hardware
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Goals
̶ Making it possible to use WebAssembly for IoT

̶ Secure drivers: only access exactly what they need
○ Defend against supply-chain attacks by sandboxing third-party 

drivers
○ Higher reliability and robustness by sandboxing components

̶ Portable drivers: any architecture, any platform
○ Support newer hardware on older platforms
○ “Write a driver once, run anywhere”

14



                     

Cyber-physical WebAssembly
Hardware WASI interfaces & Componentized drivers
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wasi-usb interface (phase 1)

Based on libusb (instead of WebUSB)
○ Close to hardware
○ Powerful
○ Compatible*

https://github.com/WebAssembly/wasi-usb/blob/main/wit/device.wit

https://github.com/WebAssembly/wasi-usb/blob/main/wit/device.wit
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wasi-i2c interface (phase 2)

Based on embedded-hal
○ Close to hardware
○ Cross-platform (even Zephyr RTOS)
○ wasi-embedded-hal crate

https://github.com/WebAssembly/wasi-i2c/blob/main/wit/i2c.wit

https://github.com/WebAssembly/wasi-i2c/blob/main/wit/i2c.wit
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Preprint (submitted to IEEE/IFIP NOMS 2025)
https://doi.org/10.48550/arXiv.2410.22919

https://doi.org/10.48550/arXiv.2410.22919
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Latency to USB device: +0.007ms
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USB throughput: -0.6%



Ongoing work at imec & Ghent University
● I2C WASI proposal: Phase 2

○ Proposal: https://github.com/WebAssembly/wasi-i2c
○ Implementation: https://github.com/idlab-discover/i2c-wasm-components
○ Collaboration with Siemens

● USB WASI proposal: Phase 1
○ Proposal: https://github.com/WebAssembly/wasi-usb
○ Implementation:

■ https://github.com/idlab-discover/usb-wasm
■ https://github.com/Wouter01/USB_WASI

● GPIO WASI proposal (in development)
○ Proposal: https://github.com/WebAssembly/wasi-digital-io
○ Implementation: https://github.com/emielvanseveren/gpio-wasm-components

● SPI WASI proposal (in development)
○ Proposal: https://github.com/WebAssembly/wasi-spi
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https://github.com/WebAssembly/wasi-i2c
https://github.com/idlab-discover/i2c-wasm-components
https://github.com/WebAssembly/wasi-usb
https://github.com/idlab-discover/usb-wasm
https://github.com/Wouter01/USB_WASI
https://github.com/WebAssembly/wasi-digital-io
https://github.com/emielvanseveren/gpio-wasm-components
https://github.com/WebAssembly/wasi-spi
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Demo time!



                     

Cyber-physical WebAssembly
Xbox controller usb driver + pacman in wasm with wasi-usb
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Q & A

Contact: merlijn.sebrechts@ugent.be
Follow: https://www.linkedin.com/in/merlijn-sebrechts/
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FAQ: WebAssembly vs Java runtime?
Many similarities both in design and use-cases

̶ “Write once, run anywhere”
̶ Architecture-independent bytecode
̶ JVM on microcontrollers: Johnson Controls heat pumps
̶ JVM in browser: Java Applets (vSphere web UI)

But ultimately, JVM failed in most of these fields. It remains a 
single-vendor runtime for a single language family.
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Why WebAssembly instead of JVM
WebAssembly learned from the 20+ years of JVM experience.

̶ Compilation target for all languages, standardized by W3C
○ JVM is too reliant on a single vendor and too focussed on a single language family
○ JVM is too opinionated about languages: e.g. requires classes and garbage collector

̶ Sandboxed by default with capability-based access to outside world
○ JVM apps have too much access to underlying OS, resulting in security and 

portability nightmares.
○ JVM assumes all code is trusted

̶ Software delivery baked-in: Streamability, Hotplugging
○ JVM is too focussed on traditional applications consisting of a single, static, 

monolithic app already on the user’s machine.
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Gotcha #1: Language support
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Language support varies, but improving rapidly

● Best supported
○ Rust
○ C, C++

● Some functionality doesn’t work
○ Python
○ Java
○ C#

● Important stdlib functionality doesn’t work
○ Go
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Gotcha #2: Changing landscape of system interfaces
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Which system interface is your compiler targeting?

○ emscriptem -> browser
○ wasip1 -> legacy WASI

■ many non-standard “dialects” like wasmer
○ wasip2 -> component model
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Gotcha #3: Varying support of runtimes
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Does your runtime support the system interfaces?

● Recommended
■ Wasmtime: wasip2 & Component Model
■ WAMR: wasip1

● Not recommended
■ Wasmer: non-standard toolchains & WASI
■ Wasmedge: super slow
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Gotcha #4: Runtime performance
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