
FOSDEM’25

Cross-platform compilers with

GNU Lightning

Paul Cercueil

https://gnu.org/software/lightning/

« GNU lightning is a library that generates
assembly language code at run-time ».

https://gnu.org/software/lightning/

« GNU lightning is a library that generates
assembly languageassembly language code at run-time ».

machine

What is GNU Lightning?

● Code generator part of a JIT engine
● Virtual CPU, with virtual registers and virtual opcodes
● Cross-platform:

● ARM, Alpha, HPPA, IA64, Loongarch, MIPS, PowerPC, RISC-V,
s390, SPARC, SuperH, x86

● 32-bit and 64-bit
● Little-endian and big-endian

● LGPLv3, GNU C, no dependencies

What is GNU Lightning?

● Created in 2000 by Paolo Bonzini
● JIT engine for GNU Smalltalk, and CLisp
● Moved to git in 2008
● Maintainer since 2012 is Paulo Cesar Pereira de

Andrade
● Currently at version 2.2.3

Lightrec

● MIPS-to-everything JIT engine for Playstation 1
emulators

● Uses GNU Lightning

● <ad>See my talk tomorrow:

« Writing a dynarec, step by step »</ad>

Why Lightning?

● LLVM / libgccjit don’t box in the same weight class
● They were designed for langages

● High-level concepts (e.g. variables)
● Language-focused algorithms

● They were designed for ahead-of-time
● Powerful optimizations
● Generate very fast code… slowly
● Lightning generates unoptimized code… very fast

● Different tools for different applications.

API overview

● Minimum of 6 GP + 6 FP registers:
● 3 caller-saved: JIT_R0 → JIT_R2 (up to JIT_R(JIT_R_NUM))
● 3 callee-saved: JIT_V0 → JIT_V2 (up to JIT_V(JIT_V_NUM))
● 6 floating-point: JIT_F0 → JIT_F5 (up to JIT_F(JIT_F_NUM))

● Simple register allocator (that you don’t need):
● u8 reg = jit_get_reg(jit_class_gpr);

jit_unget_reg(reg);

API overview

● « virtual opcodes » for binary operations, arithmetic,
boolean, branching, memory I/O, floating-point math,
function calls and function prolog/epilog

● Each instruction is composed of:
● An operation, like « mul » or « sub »
● Most times, a register/immediate flag (r or i)
● A type identifier, when applicable.

No type suffix = pointer-sized

API overview

jit_<op><r|i>[_<type>](O1, O2, O3)

API overview

Forward branch Backwards branch

API overview

● Function prolog / epilog:
jit_prolog()
jit_epilog()

● Code generation:
void (*fn)() = jit_emit();

● Code disassembly:
jit_disassemble()

Example of generated code

« jit_addr(JIT_R0, JIT_R1, JIT_R2); »

Demo

« Unfortunately, no one can be told
what GNU Lightning is.

You have to see it for yourself. »

Demo

● Imagine a scripting langage called « MindBlown »
● 32K memory cells, each signed 32-bit
● < / > : switches to the left/right cell
● + / - : increment/decrement value at current cell
● [/] : repeat until the current cell is zero
● . : Print the character of the current cell

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15

