
Proprietary + Confidential

Feb 2025

A Retrospective on Google’s
SBOM Implementation
Brandon Lum (@lumjjb), Google
Marco Deicas (@mdeicas), Google

Part 1 recording:
https://drive.google.com/file/d/1wjuNEo7GwwZTehpcgVJaMI-8TdXkG2KF/view?usp=drives
dk

https://drive.google.com/file/d/1wjuNEo7GwwZTehpcgVJaMI-8TdXkG2KF/view?usp=drivesdk
https://drive.google.com/file/d/1wjuNEo7GwwZTehpcgVJaMI-8TdXkG2KF/view?usp=drivesdk

Proprietary + ConfidentialProprietary + Confidential

1. How do we SBOM?
2. Lessons learnt from SBOM’ing

Proprietary + ConfidentialProprietary + Confidential

1. How do we SBOM?
2. Lessons learnt from SBOM’ing

Store RetrieveGenerate Applications

Proprietary + Confidential

SBOM Design Principles
01

What are properties of the SBOMs we
want to strive for?

● Design doc with properties of SBOMs and best
practices to achieve them
○ Properties

■ Accurate and complete
■ Trustworthy (Integrity & Provenance)

● Best practices: more throughout the talk!

Link to SBOM generation principles doc

Where do we start? SBOMs?

Looking for
SBOMs that are…

Accurate

Complete

Trustworthy

https://docs.google.com/document/d/1swnXVHftU3O_X565WGkJgRmAibokRX7PWiiFTpyQkek/edit?tab=t.0#heading=h.x9snb54sjlu9

Where do we start? YES

Opinionated or not? YES

● Problem scope is HUGE, many moving parts.

● Less is MORE
○ 1 standard: SPDX SBOMs
○ 1 storage and retrieval process
○ n builders << m products
○ etc.

CDX

Proprietary + Confidential

SBOM Generation
02

 Generate

Source SBOMs??

Analysis SBOMs?

Build SBOMs??

 Generate

Source ArtifactBuild

● Builds are lossy
● Loses context

● Includes tests and plugins
● Ambiguous dependency

resolution

Source SBOMs??

Analysis SBOMs?

Build SBOMs??

 Generate

Too little
information

(Incomplete)

Too much information
(Inaccurate)

Build ArtifactSource

Attaining good quality (accuracy and completeness):
- BUILD-time whenever possible!! (extra credit for build

tools)

 Generate: What we did

1. Only build processes/builders can generate SBOMs

2. SBOM Generation tooling
a. Where possible, use build-tooling to generate SBOMs

i. Android: dev/donation of SPDX Gradle plugin
ii. Google3 (monorepo): Tooling leverages google3 metadata, annotations,

and blaze
b. Otherwise, use generic composition tooling (Syft, and internal version of

osv-scalibr)

https://github.com/spdx/spdx-gradle-plugin
https://github.com/google/osv-scalibr

Proprietary + Confidential

Store SBOM
02

 Store

DATABASE !!
BLOB STORE!! WEB SCALE

 Store

How do we create a SBOM
database that we trust?

⇔

If we are using SBOMs to make
security decisions, we need to
trust them.

 Store

Supply Chain Integrity Log
(SCILo)

For those familiar with
GUAC, it is similar
(& under the same team)

 Store

SCILo
Builders

Great! This is a securely
built artifact (“abcd..”) by a
trusted builder.

I built an artifact, here’s the
build provenance to show it
was securely built + build info

SLSA
”abcd..”

Signed by builder key

 Store

SCILo
Builders

fe34..

predicateType:
“ReferenceAttestation”

subject: {
…// software artifact hash
 “sha256”:”abcd..”
}

// SBOM Location and digest
MIMEType: “..spdx”
Location: “gs://…spdx.json”
Digest: “fe34..”

Great SBOM “fe34…” is for
software “abcd..”.

Link: Intoto Reference Attestation

https://github.com/in-toto/attestation/blob/main/spec/predicates/reference.md

 Store

SCILo
Builders

fe34..

predicateType:
“ReferenceAttestation”

subject: {
…// software artifact hash
 “sha256”:”abcd..”
}

// SBOM Location and digest
MIMEType: “..spdx”
Location: “gs://…spdx.json”
Digest: “fe34..”

Great! I trust this builder’s
SBOM generation process!
Your SBOM is good!

Signed by builder key

- SBOMs should be signed to ensure integrity
- The provenance of the SBOM should be accounted for

SCILo

Artifact URI Artifact Hash SBOM

container_image://gcr.io/k8s sha256:fefe.. /path/to/sbom-blob.spdx1.json

file://networkstore/somedir/binary sha256:1234.. /path/to/sbom-blob.spdx2.json

container_image://staging.gcr.io/gke/abc sha256:abcd.. /path/to/sbom-blob.spdx3.json

… … …

 Store

Great… This should be easy…

Proprietary + Confidential

Retrieve SBOM
03

Retrieve: Ideal

Want:

Lookup
(“container_image://gcr.io/gke/abc”) =

Retrieve: Ideal

Want:

Lookup
(“container_image://gcr.io/gke/abc”) =

Got:

Lookup
(“container_image://gcr.io/gke/abc”) = NULL??

It’s a supply CHAIN….

staging.gcri.io/abcd

gcr.io/abcd
promote

?

http://staging.gcri.io/abcd
http://staging.gcri.io/abcd

It’s a supply CHAIN….

staging.gcri.io/abcd

gcr.io/abcd
promote

???

http://staging.gcri.io/abcd
http://staging.gcri.io/abcd

It’s a supply CHAIN….

staging.gcri.io/abcd
(amd64)

staging.gcri.io/abcd
(arm64)

assemble

asse
mble staging.gcri.io/abcd

(multi-arch)

promote
gcr.io/abcd

http://staging.gcri.io/abcd
http://staging.gcri.io/abcd
http://staging.gcri.io/abcd
http://staging.gcri.io/abcd

It’s a supply CHAIN….

staging.gcri.io/abcd
(amd64)

staging.gcri.io/abcd
(arm64)

assemble

asse
mble staging.gcri.io/abcd

(multi-arch)

promote
gcr.io/abcd

./a.out

http://staging.gcri.io/abcd
http://staging.gcri.io/abcd
http://staging.gcri.io/abcd
http://staging.gcri.io/abcd

Retrieve: Ideal

Want:

Lookup
(“container_image://gcr.io/gke/abc”) =

Got:

Lookup
(“container_image://gcr.io/gke/abc”) =

Retrieve: Edge cases

“Edge” Cases

- Container images manifest or config change (drift in hashes)
- Promoting images from staging to prod (change in reference)
- CI stages which result in change of hash (e.g. signing APKs)
- Inclusion of binaries which do not provide additional info
- Inclusion of binaries in packages that SCA tools can’t scan (e.g. installables)

Attaining good quality (accuracy and completeness):
- \Compose SBOMs to obtain a more complete SBOM.

WAIT!! What graph?

gcr.io/abcd

staging.gcri.io/abcd

promote

?

?????

http://staging.gcri.io/abcd
http://staging.gcri.io/abcd

WAIT!! What graph?

gcr.io/abcd

staging.gcri.io/abcd

promote

?

BUILD! BUILD! BUILD!

http://staging.gcri.io/abcd
http://staging.gcri.io/abcd

 RECAP!

SCILo
Builders

I built an artifact, here’s the
build provenance to show it
was securely built

SLSA
”abcd..”

Signed by builder key

and what it was built from

Using SLSA

gcr.io/abcd

Build 1

Build 2

Build 3 Build 4

SLSA build metadata can be used to glue together lost pieces of SBOMs,
creating more accurate SBOMs by composing them together!

https://slsa.dev/blog/2022/05/slsa-sbom

http://staging.gcri.io/abcd
https://slsa.dev/blog/2022/05/slsa-sbom

Retrieve Flow

Product OwnerCompliance Officer

Give me SBOMs for
product PixelOS.

I am looking for URI: XYZ
or Hash: sha256:abcd…

Translating request requirements is not easy
- Product mapping to software is HARD
- Effort needs to put into maintaining software inventory

Product mapping

PixelOS

GKE vX kubeapiserver vX

hyperkube vX

calico vX

sha:256=abcde1

sha:256=abcde2

sha:256=abcde3

Android release
branch Q4_xyz
commit 19283

sha:256=abcde1

EO 14028
Compliance

Doing cool
things with
SBOMs

Proprietary + Confidential

Using SBOM
04

Using SBOMs
● Operationalizing an SBOM-based dependency inventory

SCILo GUAC

+ Threat Intelligence
+ Organization Metadata

Quote from team: “We were able to figure out that we weren’t
affected within 10 minutes”

Incident Response (e.g. xz)

Point of contact not provided by
SBOMs but VERY important!

Because SBOMs are common formats across
ecosystems, this queries across otherwise
silo’ed systems

Fleet-wide Insights

Using GUAC + deps.dev, we mapped out fleet-wide dependency
OpenSSF scorecard risks.

Danger zone!

Fleet-wide Insights

Danger zone!

Fleet-wide insights
are only actionable
if its scoped to
someone that can
take action

Here fleet = all
container
images across
multiple orgs
and
ecosystems
= little
accountability

Proprietary + Confidential

SBOMs Lessons Learned++
05

Using SBOMs: Lessons Learned

● Missing Software Identifiers

��

Using SBOMs: Lessons Learned

● Missing Software Identifiers

● SCA Shortcomings

pkg:npm/extraneous-dev-dep

��

Using SBOMs: Lessons Learned

● Missing Software Identifiers

● SCA Shortcomings

��

Using SBOMs: Lessons Learned

● Missing Software Identifiers

● SCA Shortcomings

● Identifier Shortcomings

Using SBOMs: Lessons Learned

● Missing Software Identifiers

● SCA Shortcomings

● Purl Shortcomings

● Focus on SBOM Quality

Using SBOMs: Lessons Learned

● Missing Software Identifiers

● SCA Shortcomings

● Purl Shortcomings

● Focus on SBOM Quality

fe34..

./a.out

./b.out

./c.out

What now?

2021 - 2024 SBOMs @ Google

● Security and compliance teams now using SBOMs to help
triage security/compliance issues

● SBOMs being part of several organizations’ governance posture
● 2 Build SBOM tools, 1 Analysis SBOM tool, and more coming!

From 0* to… 4M
SBOMs a week

200M+
SBOMs

*We had some SBOMs generated from compliance purposes

What’s next

● SBOM Quality Library?
● Collaborating with OSV-SCALIBR
● Guac Software Identifiers Project
● Better organization metadata (via attestations)

