Google

A Retrospective on Google’s
SBOM Implementation

Brandon Lum (@lumijjb), Google
Marco Deicas (@mdeicas), Google

Part 1 recording: s
https://drive.gooagle.com/file/d/1wjuNEo7GwwZTehpcqVJaMI-8 TdXkG2KF/view?usp=drives
Al

https://drive.google.com/file/d/1wjuNEo7GwwZTehpcgVJaMI-8TdXkG2KF/view?usp=drivesdk
https://drive.google.com/file/d/1wjuNEo7GwwZTehpcgVJaMI-8TdXkG2KF/view?usp=drivesdk

1. How do we SBOM?
2. Lessons learnt from SBOM’ing

1. How do we SBOM?
2. Lessons learnt from SBOM’ing

A\ TR =
| -
| v | i \
S . (
| A ¥ Ao
i/ (| o7

Generate Store Retrieve Applications

01

SBOM Design Principles

Where do we start? SBOMSs?

Looking for
SBOMs that are...

Accurate @

Complete ©®

Trustworthy @

What are properties of the SBOMs we
want to strive for?

e Design doc with properties of SBOMs and best
practices to achieve them
o Properties
m Accurate and complete
m Trustworthy (Integrity & Provenance)

e Best practices: more throughout the talk!

Link to SBOM generation principles doc

https://docs.google.com/document/d/1swnXVHftU3O_X565WGkJgRmAibokRX7PWiiFTpyQkek/edit?tab=t.0#heading=h.x9snb54sjlu9

Where do we start? YES

Opinionated or not? YES

e Problem scope is HUGE, many moving parts.

e |Lessis MORE
o 1 standard: SPDX SBOMs
o 1 storage and retrieval process
o n builders << m products
o etc.

2 SPDX

02

SBOM Generation

[=| Generate

=] Generate

s
N\a\\J S\S 580

r [=)

Source Build Artifact
e Includes tests and plugins e Builds are lossy
e Ambiguous dependency e Loses context

resolution

[=| Generate

Attaining good quality (accuracy and completeness):
- BUILD-time whenever possible!! (extra credit for build

tools)?\k

r i =

Source Build Artifact
Too much information Too little
(Inaccurate) information

(Incomplete)

|=| Generate: What we did

1. Only build processes/builders can generate SBOMs

2. SBOM Generation tooling
a. Where possible, use build-tooling to generate SBOMs
i. Android: dev/donation of SPDX Gradle plugin
ii. Google3 (monorepo): Tooling leverages google3 metadata, annotations,
and blaze
b. Otherwise, use generic composition tooling (Syft; and internal version of
osv-scalibr)

https://github.com/spdx/spdx-gradle-plugin
https://github.com/google/osv-scalibr

02

Store SBOM

DATABASE !
BLOB STORE!! WEB SCALE

How do we create a SBOM
database that we trust?

<

If we are using SBOMs to make
security decisions, we need to
trust them.

< Store

(0

Supply Chain Integrity Log
(SCILo)

For those familiar with D
GUAQC, it is similar
(& under the same team) O

< Store

| built an artifact, here’s the
build provenance to show it
was securely built + build info

.;'
SLSA

"abcd..”
m ="+ Signed by builder key

Great! This is a securely
built artifact ("abcd..”) by a
trusted builder.

Builders

SCILo

< Store

Co in-toto

predicateType: Great SBOM “fe34...” is for
ReferenceAttestation « ”
software “abcd..”.

subject: {
..Il software artifact hash
“sha256":"abcd..”

}
// SBOM Location and digest
[| MIMEType: “.spdx”
Location: “gs://...spdx.json”
ﬁ m - Digest: “fe34..”

SCILo

Builders Link; Intoto Reference Attestation

https://github.com/in-toto/attestation/blob/main/spec/predicates/reference.md

< Store

Signed by builder key

Co in-toto

predicateType:
“ReferenceAttestation”

subject: {

..Il software artifact hash
“sha256":"abcd..”

}

/1 SBOM Location and digest
MIMEType: “.spdx”

Location: “gs://...spdx.json”
Digest: “fe34..”

Great! | trust this builder’s

SBOM generation process!
Your SBOM is good!

Builders

- SBOMs should be signed to ensure integrityi\& SCILo
- The provenance of the SBOM should be accounted fo?l\

Store

((

- Artifact URI Artifact Hash SBOM
v container_image://gcr.io/k8s sha256:fefe.. /path/to/sbom-blob.spdx1.json
file://networkstore/somedir/binary sha256:1234.. /path/to/sbom-blob.spdx2.json
SCILo
container_image://staging.gcr.io/gke/abc | sha256:abcd.. /path/to/sbom-blob.spdx3.json

Great... This should be easy...

03

Retrieve SBOM

Retrieve: Ideal

Want:

Lookup
(“container_image://gcr.io/lgke/abc”) = |- <pox

Retrieve: Ideal

Want:

Lookup

(“container_image://gcr.io/gke/abc”) =
Got:

Lookup

(“container_image://gcr.io/gke/abc”) = NULL??

It’s a supply CHAIN....

promote
gcr.io/abcd
staging.gcri.io/abc

http://staging.gcri.io/abcd
http://staging.gcri.io/abcd

It’s a supply CHAIN....

227

promote

Q gcr.io/abed
tMwng.gcri.io/abed

http://staging.gcri.io/abcd
http://staging.gcri.io/abcd

It’s a supply CHAIN....

staqing.qgcri.io/abcd

promote

O gcr.io/abed

staging.gcri.io/abcd
(multi-arch)

http://staging.gcri.io/abcd
http://staging.gcri.io/abcd
http://staging.gcri.io/abcd
http://staging.gcri.io/abcd

It’s a supply CHAIN....

staqing.qgcri.io/abcd
(amdo64)

assemble promote

() Q gcr.io/abed

staqging.qgcri.io/abcd
(multi-arch)

staqging.qgcri.io/abcd
(arm64)

[Z sPDX

http://staging.gcri.io/abcd
http://staging.gcri.io/abcd
http://staging.gcri.io/abcd
http://staging.gcri.io/abcd

Retrieve: Ideal

Want:

Lookup

(“container_image://gcr.io/lgke/abc”) = |- <pox
Got:

Lookup
(“container_image://gcr.io/gke/abc”) = |[FEspex) [[aspox| jlzspox

Retrieve: Edge cases

“Edge” Cases

- Container images manifest or config change (drift in hashes)

- Promoting images from staging to prod (change in reference)

- Cl stages which result in change of hash (e.g. signing APKs) ®USt
- Inclusion of binaries which do not provide additional info

- Inclusion of binaries in packages that SCA tools can’t scan (e.g. installables)

Attaining good quality (accuracy and completeness):
Compose SBOMs to obtain a more complete SBO

WAIT!! What graph?

Qgcr.io/abcd
??°7?7? -

http://staging.gcri.io/abcd
http://staging.gcri.io/abcd

WAIT!! What graph?

Qgcr.io/abcd
BUILD! BUILD! BUILD! -

http://staging.gcri.io/abcd
http://staging.gcri.io/abcd

RECAP!

| built an artifact, here’s the
build provenance to show it
was securely built and what it was built from

.g'
SLSA

"abcd..”
m ="+ Signed by builder key

Builders

SCILo

Using SLSA

Build 2

Build 1 g .
iy 3 Build 3 Build 4
t * gcr.io/abcd

SLSA build metadata can be used to glue together lost pieces of SBOMs,
creating more accurate SBOMs by composing them together!

https://slsa.dev/blog/2022/05/slsa-sbom

http://staging.gcri.io/abcd
https://slsa.dev/blog/2022/05/slsa-sbom

Retrieve Flow

Compliance Officer Product Owner
2 -
Give me SBOMs for | am looking for URI: XYZ
product PixelOS. or Hash: sha256:abcd...

Translating request requirements is not easy
- Product mapping to software is HARD
- Effort needs to put into maintaining software inventory

Product mapping

[PixelOS

—

[GKE vX

!
!

Android release
branch Q4_xyz
commit 19283

|
)

s

—

A,

(&

~

{ sha:256=abcde1 }

Vs

kubeapiserver vX

A,

(&

sha:256=abcde1

-~

hyperkube vX

A,

(&

sha:256=abcde?2

-~

calico vX

(&

sha:256=abcde3

J

Doing cool
things with

SBOMs
EO 14028

Compliance

04

Using SBOM

Using SBOMs

e Operationalizing an SBOM-based dependency inventory

AllithelSB0

¥

s

SCILo GUAC

+ Threat Intelligence
+ QOrganization Metadata

Incident Response (e.g. xz)

Quote from team: “We were able to figure out that we weren’t

affected within 10 minutes”

Next, find where the package is used.

Purl

~ pkg:deb/debian/liblzma5@5.2.4-1

| Dependent count This search is limited to the

latest builds of each
- Resourceuri.

ResourceUri

ResourceUri
container_image://us-
container_image://us-
container_image://us-

container_image://us-

container_image://us-
container_image://us-
container_image://us-
container_image://us-

container_image://gcr.

Because SBOMs are common formats across
™~ ecosystems, this queries across otherwise
silo’ed systems

Point of contact not provided by
romoiconaet OBOMs but VERY important!

¢
fum—
{ {

*moma_team_id": N EEEEEEEEEE “buganizer_component"
"buganizer_component"”: IR, |
}

"team_email_addresses": [
‘overground-dev-null@google.com’,
‘cloud-memcache-

team@google.com”

}

{ {

*moma_team_id": INNEG_——— *buganizer_component".
"buganizer_component”: ‘| I [

"team_email_addresses": [

Fleet-wide Insights

& Using GUAC + deps.dev, we mapped out fleet-wide dependency
O OpenSSF scorecard risks.

0SS Dependencies Danger Zone! ®
(] ¢ 10
.. ’ T .O:.'o.. . ¢

e ° o o : ¢

-..t!..

Fleet-wide Insights

Dangerzone!
e

ry

>
)
c
]
E
o
o
[

ndencies / /

% o el 2

250

125

2.50

e 0
7.50

10.00

Fleet-wide insights
are only actionable
if its scoped to
someone that can
take action

®

@ : Here fleet = all
container
images across
multiple orgs
and
ecosystems
= little
accountability

05

SBOMs Lessons Learned++

Using SBOMs: Lessons Learned

e Missing Software Identifiers

"externalRefs": []

Using SBOMs: Lessons Learned

e SCA Shortcomings

{
"name": “extraneous-dev-dep", pkg:npm/extraneous-dev-dep

"version": "0.0.0",

"dependencies": {

"d"“: "1.0.0"
}
}

Using SBOMs: Lessons Learned

e SCA Shortcomings

Duplicate of . Duplicate of . Duplicate of . Duplicate of . Duplicate of)5. Duplicate of . Duplicate of
. Duplicate of . Duplicate of . Duplicate of . Duplicate of . Duplicate of #317. Duplicate of

o

Using SBOMs: Lessons Learned

e |dentifier Shortcomings

Using SBOMs: Lessons Learned

e Focus on SBOM Quality

Using SBOMs: Lessons Learned

e Focus on SBOM Quality

Ja.out

- b | b

Jc.out

What now?

2021 - 2024 SBOMs @ Google

From 0* to.. 4 M 200M+

SBOMs aweek SBOMs

e Security and compliance teams now using SBOMs to help
triage security/compliance issues

e SBOMs being part of several organizations’ governance posture

e 2 Build SBOM tools, 1 Analysis SBOM tool, and more coming!

*We had some SBOMSs generated from compliance purposes

What’s next

SBOM Quality Library?

Collaborating with OSV-SCALIBR

Guac Software Identifiers Project

Better organization metadata (via attestations)

