
We are OpenInfra!

Operating OpenStack Swift in real life

Seongsoo Cho (NHN Cloud / OpenInfra Korea User Group)

2025.02.01 FOSDEM 2025

Unpredictable request volume and traffic.

Many small files rather than large files.

Strong dependency when used as backend storage for other services

(e.g., CortexMetrics in Prometheus).

Must ensure stable service even during data rebalance.

Challenges Faced by Object Storage in Public Cloud Services

One of the initial OpenStack Projects

- Initially used as a storage backend by Glance for storing cloud OS

image data.

Unlike other OpenStack components, it can be deployed independently.

Supports authentication systems: TempAuth (temporary), Keystone, and Custom Auth.

 - Custom Auth : https://docs.openstack.org/swift/latest/development_auth.html

OpenStack Swift

OpenStack Swift Components (Logical Concepts)

• Account
The top-level concept in Swift is the Account, which is

required to use Swift
An Account serves as a namespace for defining Containers.

• Container
A Container is a storage space for objects (It is not a folder).
Container names must be unique within a single Account.

• Object
Unstructured data such as documents, images, and videos.

Account

Container Container

Container Container

Object

URI Format : /account/container/object

account : keystone project id

ex) /AUTH_testuser/test_container/a/b/c/test_object.txt

Sample: https://service.com/v1/AUTH_testuser/test_container/a.txt

OpenStack Swift URI Format

OpenStack Swift Component (Node)
• Proxy-Server
 Handle Client request, auth, encrypt and
forward the request to the backend

• Account-Server
 Storing account info into SQLite3

• Container-Server
 Storing Container info into SQLite3

• Object-Server

Proxy-ServerProxy-Server

Account-Server Container-Server Object-ServerAccount-ServerAccount-Server Container-ServerContainer-Server Object-ServerObject-Server

Call HTTP REST API

Client

Call Swift API - HTTP REST

Ops Story: Minimal Deployment

Account / Container Node

Minimum: 4 nodes

Object Node

Minimum : 4 nodes
Memory: 1GB per 1TB disk

SSD SSD SSD

Separate Account and Container disks on
the same node

HDD HDD HDD HDD

Ensure consistent disk sizes across all
nodes whenever possible.

OpenStack Swift Network Architecture

Service Network
access from public,
Network handling incoming user
traffic.

Data Network
private network, can’t access from
public. Internal traffic for handling
user requests.

Replication Network
private network,
Network for transferring data to
maintain replicas within Swift.

Ops Story: Load Balancing for Service Traffic

G
S
L
B

HAProxy
keepalived

HAProxy
keepalived

Swift
Proxy

Swift
Proxy

Swift
Proxy

Swift
Proxy

VIP 1

VIP 2

VRRP

swift.service.com (CNAME)
 - swift.gslb.service.com (A)
 - VIP 1 (50%)
 - VIP 2 (50%)

Next Ops Story

Scale out of Object Nodes

Determining data storage location - Ring

Swift’s unique Ring, based on Consistent Hash Ring. [1]

A file that determines where the Account, Container, and Object data should be stored
(on which server and disk).

The Ring file must be stored on all nodes.

All Proxy, Account, Container, and Object servers must have the same Ring content.

[1] https://docs.openstack.org/swift/latest/overview_ring.html

Determining data storage location - Components of Ring

• Partition Power : Factors Determining the Number of Partitions
 • The number of partitions is calculated as 2^N.
 • The physical space where data (objects) are stored.

• Number of Replication

• Device List

• Device Lookup Table

Ring - Device List

0 1 2 3

region: 1
ip: 10.1.1.4
port: 3345
device: /dev/sdb1

region: 1
ip: 10.1.1.5
port: 3345
device: /dev/sdb1

region: 1
ip: 10.1.1.6
port: 3345
device: /dev/sdb1

region: 1
ip: 10.1.1.4
port: 3346
device: /dev/sdc

Device List
● An array of information about the disks that Swift will use.
● Each index contains information about how to access the disk.

Ring - Device Lookup Table
A table that stores which disks each partition’s 3 replica copies should be stored on

0 1 2 3

0 1 3 3 19

1 14 1 1 34

2 18 39 10 64

Partition

Replicas
(Primary Node)

Index of
Device List

Device List

Ring - Handoff Node

If the primary node fails, a handoff node is temporarily designated in

the Ring to store the data.

0 1 2 3

0 1 3 3 19

1 14 1 1 34

2 18 39 10 64

Partition

Primary Node

Index of
Device List

Handoff Node

4 2 29 286 1

5 4 58 19 60

6 38 47 58 61

Object Storage Location Determination Method

Where should “AUTH_test/container/my_object.txt” be stored?

0 1 2 3

0 1 3 3 19

1 14 1 1 34

2 18 39 10 64

Partition

Primary Node

Index of
Device List

Handoff Node

4 2 29 286 83

5 4 58 19 60

6 38 47 58 61

Object Storage Location Determination Method
The Proxy server computes the MD5 hash of the request URI.
ex) md5(“AUTH_test/container”)

The MD5 value is then taken modulo the number of partitions to determine the result.
ex) “2205229274494a9243f23f7e653977c” % 2048 = 140

140 represents the partition number in the device lookup table.
The data location is determined by using the device index number assigned to the
primary node for partition 140 in the device lookup table.

0 1 2 140

0 1 3 3 19

1 14 1 1 34

2 18 39 10 64

Partition

Replicas
(Primary Node)

Physical Data Storage Structure

How to add a new object node?

The Device List contains not only disk information but also a value called weight.

Weight: The proportion of the disk in the overall pool
● A larger weight means the disk is assigned to more partitions.

I set the weight as the disk size in GB.

0 1 2 3

region: 1
ip: 10.1.1.4
port: 3345
device: /dev/sdb1

weight: 4000

region: 1
ip: 10.1.1.5
port: 3345
device: /dev/sdb1

weight: 5000

region: 1
ip: 10.1.1.6
port: 3345
device: /dev/sdb1

weight: 4000

region: 1
ip: 10.1.1.4
port: 3346
device: /dev/sdc

weight: 7000

Adding a new object node.

Adding a new node means adding a new disk to the Device List.

The newly added disk must be placed in the Device Lookup Table.

At this point, the contents of the Device Lookup Table change,
== disks are reassigned to partitions,
== data migration occurs.

Data migration uses the replication network to avoid impacting service
traffic.

OpenStack Swift Ring

[1] https://rackerlabs.github.io/swift-ppc/

Increase Partition Power

Adding nodes means increasing the number of disks in the Ring.

The number of partitions is determined when the Ring is first created.

With a Partition Power of 10, up to 1024 disks can be used.

Swift provides a feature to increase Partition Power. (Increase Partition Power) [1]

- This process creates hard links for all objects, causing high disk load.

[1] https://docs.openstack.org/swift/latest/ring_partpower.html

OpenStack Swift Ring Calculator

[1] https://rackerlabs.github.io/swift-ppc/

Ops Story: Slow object replication
Even with sufficient disk utilization and network bandwidth, object

replication can be very slow.

If a partition contains a large amount of data, updating hashes.pkl takes

a significant amount of time.

In my case, each partition contained tens of millions of files, and

processing a single disk with 100 partitions took three days.

Ops Story: Container DB 3 copy mismatch.

The Container DB stores the object list and container information.

The Container DB also has 3 copies for replication.

SQLite3 is used for the database.

The process of updating the object in the container DB

Proxy-Server

Account
Server

Container
Server

Object-Server
(A)Client

Upload Object

The Account/Container DB must be updated for each object upload/delete.

The asynchronous processing daemon
updates the container information.

Storing Object

Updating the
object in the
container.

The impact of container DB 3-copy data mismatch
- As the service grows, data inconsistencies can occur in the container DB.

-> This should never happen, but it can occur if the container pool is too small compared to

the overall request volume.

The impact of container DB 3-copy data mismatch
- As the service grows, data inconsistencies can occur in the container DB.

-> This should never happen, but it can occur if the container pool is too small compared to

the overall request volume.

- When data inconsistency occurs among the three copies of the container DB, several

troublesome situations arise.

- Files uploaded via DLO become undownloadable (e.g., cloud os images).

- The multipart file list for a.img is stored with a part prefix, and data is retrieved

via object listing. If the container DB is unstable, listing fails.

- From the user’s perspective, it seems like the object has disappeared.

How are we solving the problem?

Perform a full scan of the object list in the 3-copy DB and manually correct

the discrepancies.

For example, if data exists in copies A and B but not in C, we add the data

to C.

How to monitor OpenStack Swift?

What metrics are being monitored?
System Resource

- CPU / Memory / Network / Etc..

API

- Collect logs to monitor request

volume, response time, and response

codes.

Recon

- You can check the status of Swift

daemons.

Statsd

- You can view the timing data within

Swift.

API Monitoring

- Collect and analyze logs, then visualize them on a dashboard

- Tools used : Filebeat / Logstash / ElasticSearch / Grafana

- Metrics

- API request volume trends

- Response code trends

- Top 10 accounts/containers with the most uploads/downloads

- Upload/download traffic volume derived from logs

Recon Monitoring

swift-recon (option) (target)

- ring md5

- time sync

- daemon running stats

- disk usage

Recon Monitoring

Ex) Check the replication status of the Object Replicator.

Statsd timing Monitoring
Metrics showing the time taken for specific operations within Swift as time-series data.

Example: Time taken to receive the first byte when downloading data from the proxy server to the object

server.

New feature in progress upstream - OpenTelemetry

https://review.opendev.org/c/openstack/swift/+/857559

Development of OpenTelemetry Integration Module for Swift Request Tracing

https://review.opendev.org/c/openstack/swift/+/857559

Overall Evaluation of OpenStack Swift
Operational experience and knowledge are not as widely available as they are for Ceph.

Operators need to have code-level understanding to accurately diagnose and address

issues.

Developing monitoring and operational tools requires significant effort.

There is a lack of additional features. (e.g encryption, IP ACL)

Thank you

Seongsoo (OpenInfra Korea User Group)

https://www.linkedin.com/in/seongsoocho/

