

🔅 FOSDEM

Confidential Virtual Machines Demystified: A Technical Deep Dive into Linux Guest OS Enlightenment

Ankita Pareek

Software Engineer, Azure Linux, Microsoft

Archana

Software Engineer, Azure Linux, Microsoft

What to expect?

- Understanding Confidential VMs
- Public cloud provider trends
- Concerns wrt Cloud CVMs & expectations from system stack (Guest OS)
- Concepts: UKI, Secure Boot, Measured Boot, Full disk encryption & Attestation
- Configurations for Guest OS enlightenment (TDX, SEV-SNP)

Confidential Virtual Machines (CVMs)

- A use case of confidential computing
- Running workload and its data in use is protected from higher privilege layers of the software and hardware stack
- Most flexible approach, easy lift and shift
- Provide remote attestation facilities
- Backed by CPU vendors: AMD SEV-SNP, Intel TDX, IBM Z SE, OpenPower PEF, ARM CCA
- Cloud provider adoptions
 - Google N2D (AMD SEV-SNP), C3D/C2D/N2D (AMD SEV), C3 (Intel TDX) Machine Series
 - Microsoft DCasv5/DCadsv5/ECasv5/ECadsv5 (AMD SEV-SNP), DCesv5/DCedsv5/ECesv5/ECedsv5 (Intel TDX), NCCadsH100v5 (AMD SEV-SNP and NVIDIA H100 Tensor Core GPUs CVM with Confidential GPU)
 - > AWS M6a, C6a, and R6a instance types
 - > Alibaba
 - ≻ IBM

Microsoft

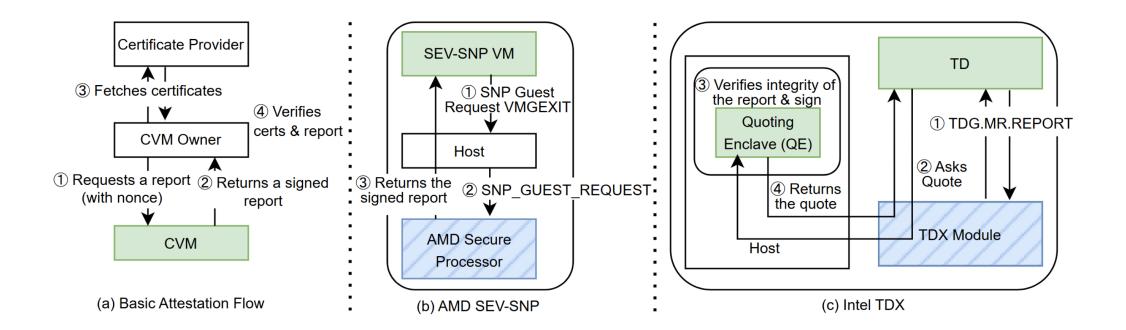
- > Oracle
- Allow Cloud Providers to Guarantee: No access to customer data even from privileged layers of the virtualization stack

What does memory encryption in CVM entail?

	Normal VM	Confidential VM
Management	Full VMM control	Restricted VMM access, secure processor involvement
VM Initialization & Boot	Standard boot process	Secure measurement of components, cryptographic attestation
VM VMM communication	VMEXIT events	VMGXIT, TDCALL, specialized communication protocol
I/O and MMIO	Direct access	Explicit VMM calls required, exceptions for normal I/O #VC, #VE
Direct Memory Access (DMA)	Open device access	External devices cannot access guest memory, dedicated bounce buffer

CVMs and Guest OS, Where is the problem?

- Confidentiality guarantee does not apply for guest OS.
- Protecting guest OS is important. Why?
- Need for Full Disk Encryption
 - without relying on host
 - supporting unattended boot
- Using vTPM


Microsoft

- Attestation
- Need to trust cloud providers
- Remote attestation

I don't trust the CLOUD

- Attest
- How would a consumer know it is what it is?
 - How is evidence generated?
 - PSP, QE Hardware based security module
 - vTPM Software based security module
 - What does the evidence contain?
 - Authenticity of the attestation report (verification) Local & Remote
- I don't trust the verifier (MAA, Google attestation agent, ITA, etc. etc.) You can build your own!

Remote attestation

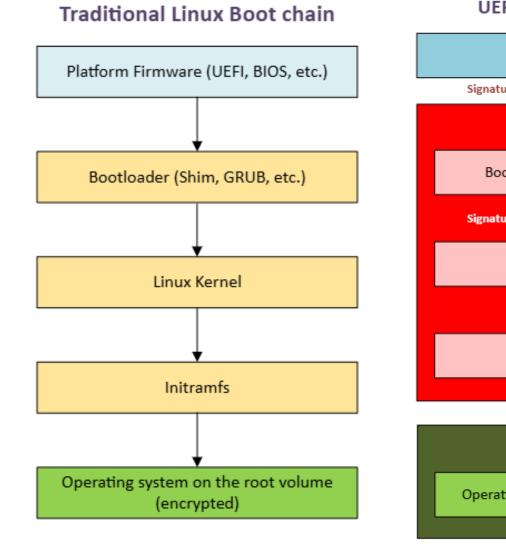
What does the Guest OS need to take care of?

- Guest Kernel (with patches for AMD SEV-SNP or Intel TDX)
- Kernel Configurations
- Full disk encryption
- Secure Boot

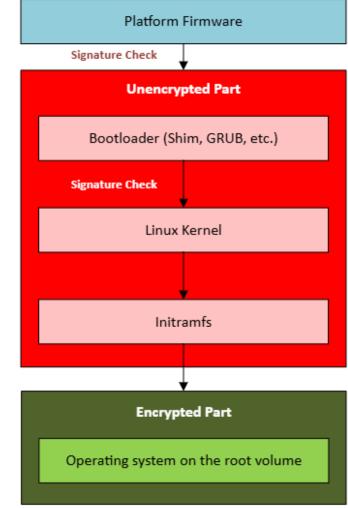
Microsoft

Measured Boot

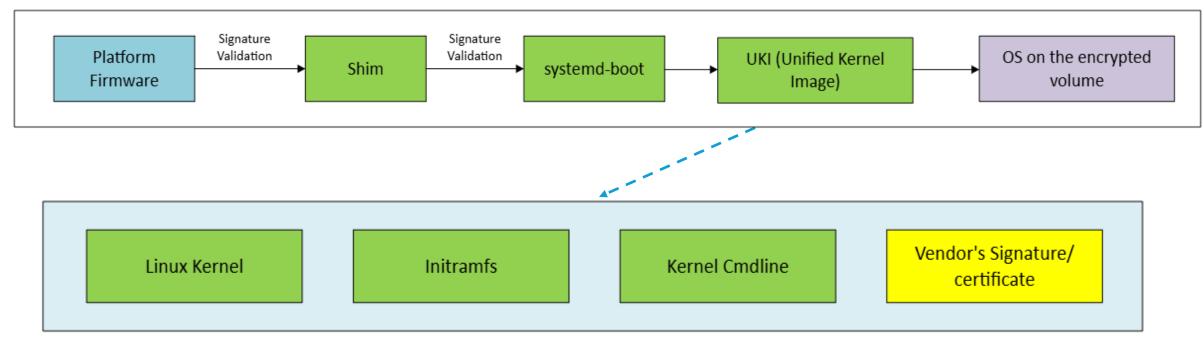
NOTE: We will mainly be focusing on these concepts from the point of view of rpm-based distros


Kernel Configurations

AMD SEV-SNP	Intel TDX
CONFIG_AMD_MEM_ENCRYPT	CONFIG_INTEL_TDX_GUEST
Kconfig for enabling support for memory	Kconfig for supporting running as a guest under
encryption on AMD processors	Intel TDX processor
CONFIG_SEV_GUEST	CONFIG_TDX_GUEST_DRIVER
KConfig for supporting the driver which provides	Kconfig for enabling the driver which provides
userspace interface to communicate securely	userspace interface to communicate with the
with the PSP for requesting attestation report and	TDX module to request the TDX guest details like
more.	attestation report.


NOTE: We assume that the guest kernel has all the required patches for supporting a confidential VM on the respective processors

Booting Linux in a Secure Fashion



UEFI Secure Boot chain

Boot simplified with UKI

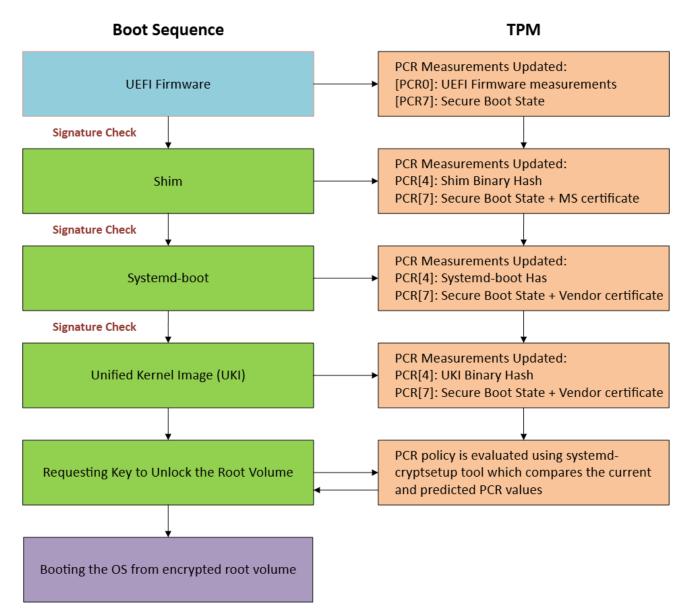
CVM Secure Boot Flow

Unified Kernel Image (UKI)

Why UKI?

✓ Immutable Bundle

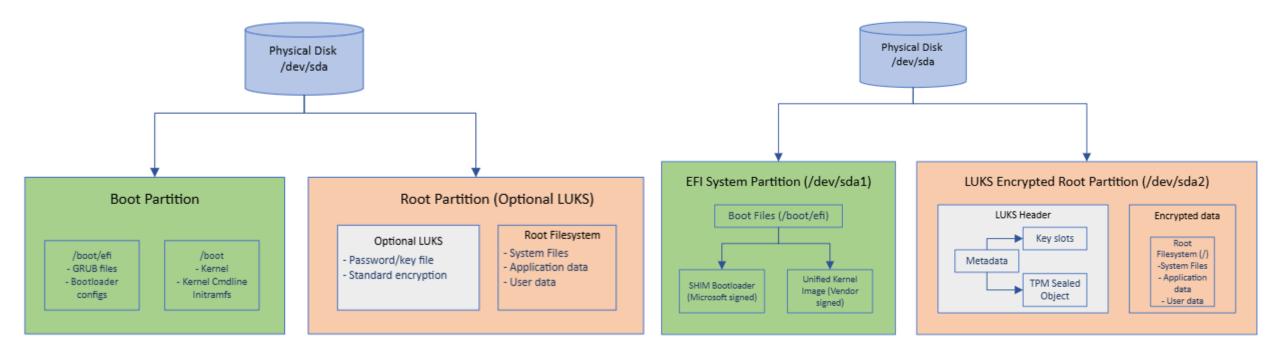
✓ Single Signature Coverage


✓ Secure Boot Integration

UKI: The Security v/s Flexibility Trade-off

Microsoft

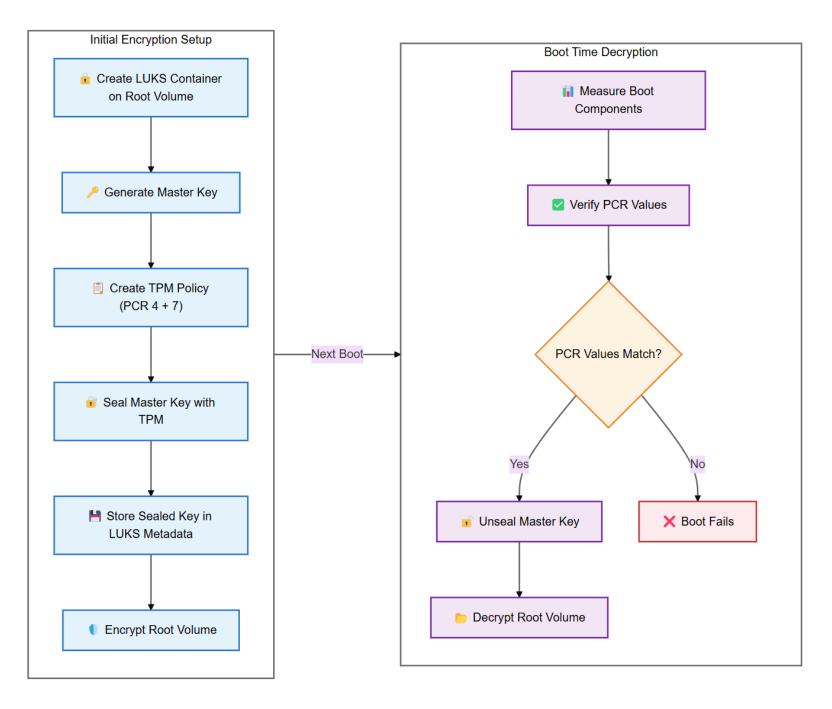
- **Static Initramfs** UKI requires vendor-built static initramfs, preventing runtime module additions or customization
- Immutable Kernel Command Line Kernel command line becomes fixed in UKI, requiring alternative methods for root volume discovery
- **Bootloader Interface Changes -** UKI binary loads directly from firmware/Shim, removing traditional bootloader UI and user interaction



Measured Boot

The standard way for checking the authenticity of the boot chain is called **Measured Boot** :a distinct hash value from each component in the chain is recorded in TPM's Platform Configuration Registers (PCRs) and can be examined later.

Disk Layout (Standard v/s Encrypted)



Standard Linux VM Partition Layout in Guest OS

Confidential Linux VM Partition Layout in Guest OS

Full Disk Encryption and Decryption Flow

Key Takeaways

- ✓ CVMs Protect the VM from Host and Hypervisor
- ✓ Don't need to fully trust the cloud provider
- ✓ Regulatory Compliance Ensures the confidentiality and integrity of the system
- ✓ Hardware agnostic : UKI and other concepts can be applied to craft and secure any Linux Guest OS image

When you finally understand how CVM guest OS is enlightened, but you still look skeptical.

References

- <u>Confidential VMs Explained: An Empirical Analysis of AMD SEV-SNP</u> and Intel TDX
- <u>Encrypted Virtual Machine Images for Confidential Computing James</u> <u>Bottomley, IBM & Brijesh Singh – YouTube</u>
- <u>Securing Linux VM boot with AMD SEV measurement</u>
- Introduction to confidential virtual machines
- <u>RHEL confidential virtual machines on Azure: A technical deep dive</u>
- FOSDEM 2024 Linux on a Confidential VM in a cloud: where's the challenge?
- FOSDEM 2025 Confidential VMs on public clouds and on-premise: a long way towards zero trust 9:30 AM, SUNDAY

THANK YOU!