
Moving closer to minimum 
with Clojure

Robert Pofuk



/about-me

- Co-Founder of AlloraIT

- https://github.com/alpha-prosoft/edd-core
- https://github.com/alpha-prosoft/edd-core-web

- https://github.com/rpofuk
- https://github.com/raiffeisenbankinternational



Agenda

● How we got here?
● From Java to Clojure
● Architecture matters
● Simplicity in production (edd-core)
● Conclusion



How did we get here?

● Confusing “simple” and “easy”
○ Why is everything so complex?

● Frameworks, libraries
○ Horror :)

● Security
○ The US government wants developers 

to stop using C and C++ 



From Java to Clojure

● I was always Open Source and standardization enthusiast
○ Using JavaEE, Spring

● How to test 
○ Mock all the things
○ Started designing services to be pure (CQRS, Hard)

● Clojure 
○ Only data and basic things

■ get, assoc, map, reduce, conj, filter, 
remove…

■ Maps, vectors, lists

● I figured architecture is important



Architecture matters

- Think very very deeply about what you actually need
- Postgres is now capable of being modest NoSql database
- Don’t use fancy query libraries
- Graph Databases, Time Series databases
- Document generation? HTML

- Microservices
- Scalability
- Fancy libraries (i.e. PdfBox)
- Team

- Design your system more on state 
transitions then mutation

- Keep your code pure and testable and 
it will make persistence layer simpler



Simplicity in production (edd-core)

● Declarative dependency resolution
○ With combination of CQRS API clients are simple

● Flow:
○ Resolve dependencies
○ Send result to command handler (98% Pure functions)
○ Store output of handler to DB

● All async communication is done via outbox pattern
● Entire system is using same flow

○ Workflow, calculation, document rendering, 
● Testing form outside

○ We deploy 10x per day to production in working hours



Dependencies & Security

● We have handful dependencies
○ And most of them we forked already and make our own build (HikariCP, Jsonista)

● Most of dependencies are Clojure wrapper around Java
○ They have no dependencies, just JVM

● We scrutinize every single addition (Whitelisting)
○ It is incredible how people take lightly adding new dependencies
○ Used to believe whitelisting is impossible

● Jobs that update entire system (Testing)



Conclusion

● Use what language offers
○ Java http client vs Apache Http client

● Stick to basic things
○ Don't abstract and hide complexity behind frameworks (i.e. Spring batch vs Pure Java)

● Design architecture to support simplicity
○ Denormalized data instead of complex query magic and DSLs
○ I.e. Store JSON instead of using hibernate

● Microservices
○ Isolate things that need special dependencies and have tools to update things automatically 

(Pipelines “update all projects”)
● Testing

○ Even if you do not need to release daily make sure you can
○ Only way you can keep system updated and secure









What is still wrong

● People want to use different technologies
○ Seems like just for sake of using them
○ Finding edge case that something else will be better suited for problem does not justify 

introducing new technology
● It is hard to find people to support change

○ People understand what I’m talking about but then they fallback to same regular things
● Clojure

○ Some small things missing in core 
■ Built in advanced schema validation (i.e. malli like thing)
■ Json



CQRS

● CQRS stands for Command and Query Responsibility Segregation
○ https://www.youtube.com/watch?v=qDNPQo9UmJA

● Frontend client implementation is simple ~300 lines of code
○ https://github.com/raiffeisenbankinternational/edd-core-web/blob/master/src/edd/client.cljs

● We have 1 API gateway for entire system
○ No fancy annotations, not annotation processor, filters…
○ Just simple routing

● Store requests in db
○ Storing entire requires easy

https://www.youtube.com/watch?v=qDNPQo9UmJA
https://github.com/raiffeisenbankinternational/edd-core-web/blob/master/src/edd/client.cljs


Frontend?

- It is good and bad
- npm, yarn, pnpm, corepack, gulp, Grunt
- Webpack, google compiler
- React, Angular, Vue, Svelte
- Selenium, Cypress, Puppeteer

- I have feeling that none of the tools 
are either abandoned or maintained

- We use MaterialUI/React with 
re-frame (And couple small libs)

- Updating is hard (Breaking changes, compatibility, dependencies…)
- Will it event become better?

- Unify tool on global?



Source: https://xkcd.com/927/


