Incremental Memory
Safety in an Established
Software Stack
| essons learned from Swift

Doug Gregor, Apple / Swift Language Steering Group

] AUSTRALIAN
SIGNALS
- - DIRECTORATE

Australian Government o Australian
/_\C _) C Cyber Security

Australian Signals Directorate Centre

Communications Centre de la sécurité , ')

Security Establishment des télécommunications o gatlor?al gyber / / SNat'Q?at:Cy?er Certl‘\z
N A, P ecuri entre

Canadian Centre Centre canadien B eCurlty entre BART OF THE GCZB

for Cyber Security pour la cybersécurité a part of GCHQ

t

O

The Case for
Roadmaps

Memory Safe

How do we get there from here?

Swift was designhed for this

The (initial) ecosystem: apps for Apple platforms

APIs in the Apple Software Development Kit (SDK) written in C & Objective-C
Millions of developers writing in C, C++, Objective-C

Binary stability over many years

Leveraging and improving the existing ecosystem

Swift made all existing C & Objective-C APIs available on day one
Interoperability made choice of language independent from library stack

Incremental adoption let people adopt at their own pace

It worked for Apple platforms

Existing C/Objective-C ecosystem moving toward Swift

Movement at all levels of the software stack
- Apps at the high level

- Binary-compatible replacements of (Objective-)C libraries with Swift

- Firmware

We think these lessons apply to other platforms and ecosystems

Agenda

Memory safety in Swift
Interoperability with the C family of languages
Build interoperability

Memory safety across the language boundary

Memory Safety in Swift

Swift one-pager

General-purpose language that is a joy to write

Approachable language with power tools for expert users
Native compilation & performance

Open-source since 2015

Cross-platform (Apple, Linux, Windows, Android, WebAssembly, Embedded, ...)

https://github.com/swiftlang/

Memory safety protects the abstract machine

Programmers will create errors
Memory safety prevents those errors from escalating into security vulnerabilities

Important preconditions must be checked by the language
- Statically if possible

- Dynamically when necessarily

It's better to halt than corrupt

Dimensions of memory safety

Lifetime safety - use-after-free

Bounds safety - out-of-bounds accesses
Type safety - type confusion

Initialization safety - use of uninitialized data

Thread safety - data races that compromise other safety guarantees

Lifetime safety

Value types

Types for which a copy is completely independent of the original

Example:

var names: [String] = ["Ada", "Barbara”, "Grace”]
var otherNames = names

names.append(”“Katherine”) // only modifies names

print(names) // ["Ada", "Barbara”, "Grace”, "Katherine”]
print(otherNames) // ["Ada"”, "Barbara”, "Grace"]

Structs and enums compose value types

Structures aggregate value types into value types:
struct Document {

var title: String

var authorNames: [String]

¥

Enums providing a choice between value types are value types:
enum DocumentReference {

case stored(Document)

case remote(URL)

¥

Passing by reference

Explicit pass-by-reference with inout parameters:

func increment(value: inout Int) {
value += 1

¥

Call site must provide a reference to mutable data:

var x = 1

let vy = 2

increment (&x) // okay

increment(&y) // error: 'y’ is immutable

1nout parameters never alias anything

Swift ensures that an inout parameter uniquely references a value

func swap<T>(_ x: inout T, _ y: inout T) { .. }

swap(&a, &b) // okay
swap(&a, &a) // error: overlappling accesses to ‘a',
// but modification requires exclusive

dCCESS

Object-oriented programming in Swift

class Person: DatabaseRecord {
var name: String

init(name: String) { .. }
override func checkConsistency() throws { .. }

¥

let otherPerson = Person(name: "Hedy")
let person = otherPerson

person.name = "“Ada”
print(otherPerson.name) // "Ada”

Automatic reference counting

Lifetime safety with very little ceremony

Good implementation tradeoffs vs. traditional GC
- Deterministic
- Locally optimizable

- Small runtime footprint

Common in C and C++ libraries

Reference cycles

Classes can be part of cyclic data structures

Swift does not provide a cycle collector

Weak references to break cycles

Reference cycles can be broken with weak references

weak var delegate: MyDelegate?

if let delegate {
// delegate 1s now a strong reference,

// object won’t go away
delegate.onStart()

/] ..

delegate.onFinish()

Bounds safety

Collections with indexing (e.g., Array) bounds-check on access

Integer arithmetic traps on overflow

Type safety

Casts perform a runtime check and return an optional
if let subclass = superclassInstance as? Subclass { .. }
if let nodeArray = collection as? [Node] { .. }

Enums use safe access patterns
switch documentReference {
case .stored(let document):
print(”Document by \(document.author) is local”)

case .remote(let url):
print(”Document can be retrieved from \(url)”)

Initialization safety

A variable must be initialized before use:

let count: Int

if let buffer = existingBuffer {
count = buffer.count

¥

return count // error: count used before being initialized

Thread safety

Shared mutable state is the root of all... data races

A data race Is when
+ Two threads access the same data, and
- At least one of the accesses is a write.

Strategies for avoiding data races
- Make it immutable
 Don't share

+ Ensure exclude ownership of writes

Value types are great for concurrency

Every copy of a value type is completely independent of its original

Value types can be freely shared in a concurrent system

Actors protect their shared mutable state

actor BankAccount {
var balance: Double

func withdraw(dollars: Double) throws { .. }
s

Access from outside of the actor must go through its implicit queue:

try await account.withdraw(dollars: 17.0)

Language + actor runtime guarantees no concurrent access to actor state

(Just) Rewrite It In

Technical hurdles to (Just) Rewrite It In

The second-system effects adds risk and delays

Need to keep shipping the old version

Social hurdles to (Just) Write It In

Team members not involved in the rewrite will feel left behind
Some people will be worried or ambivalent

Challenges with the rewrite will be attributed to the new language

Avoid silos

Be iIncremental

Get that first line of memory-safe code into your project now
Try to write new code In the new language
Involve the whole team

Targeted component rewrites are okay

_anguage Interoperability

Embedding a C(++) compiler

Swift provides built-in support for interoperability with C
Import C headers directly into Swift

Export C headers from Swift

POSIXINnC

int dup(int);
int dup2(int, int);

int pipe(int [2]);

ssize_t read(int, void *, size_t);

POSIX In Swift

func dup(Int32) -> Int32
func dup2(Int32, Int32) -> Int3/

func pipe(UnsafeMutablePointer<Int32>) -> Int32

func read(Int32, UnsafeMutableRawPointer?, Int) -> Int

CoreGraphics in C

typedef struct CGColorSpace *CGColorSpaceRef;

CGColorSpaceRef CGColorSpaceRetain(CGColorSpaceRef space);

vold CGColorSpaceRelease(CGColorSpaceRef space):
CGColorSpaceRef CGColorSpaceCreateWithName(CFStringRef name);
CFStringRef CGColorSpaceCopyName(CGColorSpaceRef space);

bool CGColorSpaceSupportsOutput(CGColorSpaceRef space);

CoreGraphics in Swift

class CGColorSpace {
tnit?Cname: CFString)
var name: CFString? { get }

var supportsOutput: Bool { get }
¥

Interoperability with C++

C++ has richer abstractions than C

Automatically map C++ conventions into corresponding Swift:
+ C++ containers imported as Swift collections
- “Move-only” types are noncopyable types in Swift

- const methods are non-mutating in Swift

Build interoperabillity

Swift started with a single build system

Able to add a single Swift source file to an existing project
Near-zero configuration to get started

Easily manage what APIs cross the language boundary

Package managers are great!

Language-specific package managers can get you up-and-running fast
egilit clone <repository>
- swift build/run/test

Ability to pull in C libraries from the system
.systemLibrary(name: "CGL1ib", pkgConfig: "gio-unix-2.0",
providers: [
brew(["glib", "glib-networking", "gobject-introspection"]),
.apt(["libglib2.0-dev", "glib—-networking",
"gobject-introspection", “libgirepositoryl.@-dev”])

1)

Package managers create silos

A C(++) code base is not using your language-specific package manager

Nobody wants to rewrite their build system to adopt your language

Embracing CMake

Augmented CMake with support for Swift
cmake _minimum_required(VERSION 3.26)
project(hello LANGUAGES CXX Swift)
add executable(hello

MyLib.cpp

Hello.swift)

target_compile_options(hello PUBLIC
"$<$<COMPILE_LANGUAGE:Swift>:-cxx—-1nteroperability-mode=default>")

https://github.com/apple/swift-cmake-examples

Memory-safe
Interoperability

C(++) does not have cooties

JEP 472: Prepare to Restrict the Use of JNI

Owner

Type

Scope
Status
Release
Component
Discussion
Relates to
Reviewed by

Endorsed by
Created
Updated

Issue

Summary

Ron Pressler

Feature

SE

Completed

24

core-libs

jdk dash dev at openjdk dot org

JEP 454: Foreign Function & Memory API
Alex Buckley, Dan Heidinga, Jorn Vernee, Mark Reinhold,
Maurizio Cimadamore

Alan Bateman

2023/05/03 09:08

2024/12/12 09:39

8307341

Issue warnings about uses of the Java Native Interface (JNI) and adjust the Foreign
Function & Memory (FFM) API to issue warnings in a consistent manner. All such
warnings aim to prepare developers for a future release that ensures integrity by
default by uniformly restricting JNI and the FFM API. Application developers can
avoid both current warnings and future restrictions by selectively enabling these
interfaces where essential.

Safe language interoperability

Establish safety conventions at language boundaries

Evolve C and C++ toward expressing more safety conventions

Bounds safety in C

C functions often carry pointer-bounds information in separate parameters:
double average(

const double *numbers,

ptrdiff_t count

) |

Memory-safe language can only express this unsafely:
func average
numbers: UnsafePointer<Double>, count: Int

) —> Double

Bounds safety in C

C functions often carry pointer-bounds information in separate parameters:
double average(

const double *x __counted_by(count) numbers,

ptrdiff_t count

) |

Memory-safe language can only express this unsafely:
func average
numbers: UnsafePointer<Double>, count: Int

) —> Double

https://clang.llvm.org/docs/BoundsSafety.html

Bounds safety in C

C functions often carry pointer-bounds information in separate parameters:
double average(

const double *x __counted_by(count) numbers,

ptrdiff_t count

) |

Memory-safe language can honor the bounds convention:
func average
numbers: UnsafeBufferPointer<Double>

) —> Double

https://clang.llvm.org/docs/BoundsSafety.html

Automatic reference counting is lifetime safety

GNOME's GVariant type uses reference counting:

typedef struct _GVariant GVariant;

GVariant *g_variant_ref(GVariant xvalue);
vold g_variant_unref(GVariant sxvalue);

GVariant *g_variant_new_double(gdouble value);
gdouble g_variant_get_double(GVariant xvalue);

Automatic reference counting is lifetime safety

GNOME's GVariant type uses reference counting:

typedef struct _GVariant SWIFT_SHARED_REFERENCE (
g_variant_ref, g_variant_unref) GVariant;

GVariant *g_variant_ref(GVariant xvalue);
vold g_variant_unref(GVariant sxvalue);

GVariant *g_variant_new_double(gdouble value);
gdouble g_variant_get_double(GVariant xvalue);

Automatic reference counting is lifetime safety

GNOME's GVariant type uses reference counting:

typedef struct _GVariant SWIFT_SHARED_ REFERENCE (
g _variant_ref, g_variant_unref) GVariant:

GVariant *g_variant_ref(GVariant xvalue);
vold g_variant_unref(GVariant sxvalue);

GVariant * _Nonnull g variant _new_double(gdouble value)
SWIFT RETURNS RETAINED;
gdouble g variant_get _double(GVariant xvalue):

Conventions for reference counting

Documenting reference-counting conventions makes them safe in Swift
- SWIFT_SHARED_REFERENCE(retain-func, release-func)
- SWIFT_RETURNS_RETAINED/ UNRETAINED for return conventions

let variant = g_variant_new_double(3.14159)
1f g_variant _classify(variant) == G_VARIANT_CLASS DOUBLE {
print(g_variant_get _double(variant))

L

Conventions for reference counting

Documenting reference-counting conventions makes them safe in Swift
- SWIFT_SHARED_REFERENCE(retain-func, release-func)
- SWIFT_RETURNS_RETAINED/ UNRETAINED for return conventions

Additional annotations provide ergonomic improvements
let variant = GVariant(double: 3.14159)
if variant.classify() == .double {

print(variant.double)

L

Additional lifetime safety in C and C++

Clang provides additional annotations regarding lifetime:
- Attribute noescape says a pointer parameter doesn't escape
- Attribute 11 fetime _bound(param) ties the lifetime of a return to a parameter

Static analysis in C and C++ can help check these annotations

Lifetime + bounds safety in C

C functions often carry pointer-bounds information in separate parameters:
double average(
const double *x __counted_by(count)
attribute((noescape)) numbers,

ptrdiff _t count
),

Memory-safe language can only express this unsafely:
func average(_ numbers: Span<Double>) —> Double

Wha tif you can't modify the C headers?

APl notes describe conventions of C APlIs

Tags:

— Name: _GVariant
SwiftImportAs: reference
SwiftRetainOp: g variant ref
SwiftReleaseOp: g variant _unref

Functions:

— Name: g_variant_new_double
SwiftName: "GVariant.init(double:)™"
SwiftReturnOwnership: retained
ResultType: "GVariant *x _Nonnull"

— Name: g_variant_classify
SwiftName: "GVariant.classify(self:)"

Safe interoperabillity requires coordination

Memory-safe

C and C++
language
Codify conventions in C(++) source code Prioritize C(++) interoperability
- Nullability + Language-level
- Lifetime + Build system

+ Bounds Honor C(++) conventions

C(++) code must benefit

Provide tooling to help with adoption

Incrementally moving memory safety forward

Build for adoption
Avold creating silos

Work across language boundaries to improve safety

Swift resources

swift.org

Swift room here at FOSDEM '25
- Embedded Swift
- Server-side Swift

Java room here at FOSDEM '25

+ Foreign Function and Memory APIs and Swift/Java interoperability

http://swift.org

