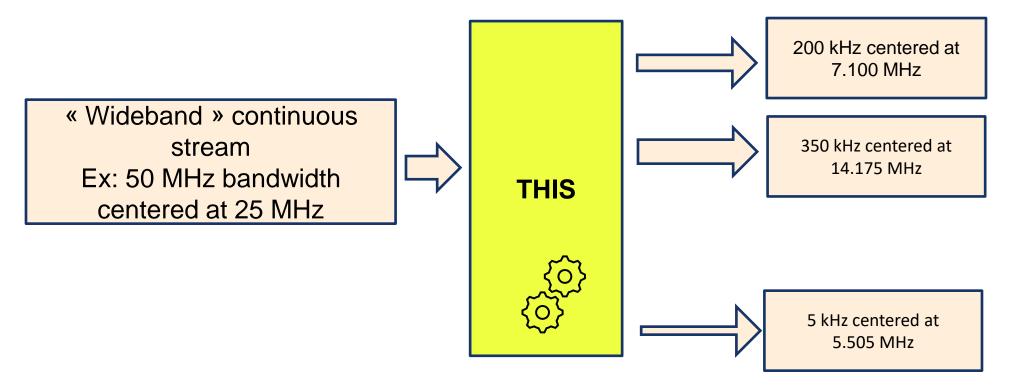
Using AI hardware accelerators for real-time DSP on embedded devices

NPU, TPU, ... make them run SDR instead of AI !

Sylvain Azarian – F4GKR

Intro & Outline

- Author : Sylvain Azarian F4GKR
 - Founder of « SDR-Technologies », small French company around Paris
 - Involved in Amateur Radio (President of IARU R1)


• Outline of the talk

- Motivation and starting point
- The paths to paradise are strewn with pitfalls
- Status and what's next
- Q&A

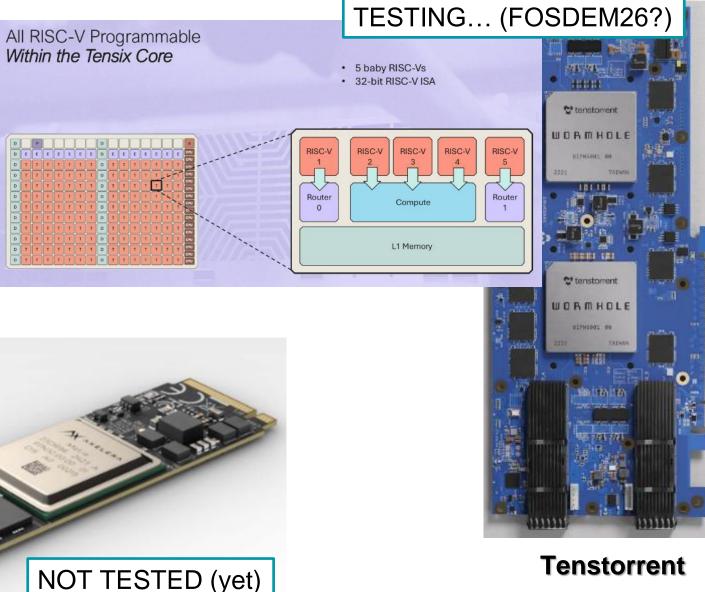
In the last episode (FOSDEM24...)

- I presented the project « libGKR4GPU », a multi "Digital Downconverter" C++ library implemented in CUDA, working (only) on NVIDIA GPU
- It provides multiple sub bands from one single input, with different specifications (bandwidth, oversampling, ...)

Using AI hardware accelerators for real-time DSP Sylvain AZARIAN – F4GKR

Motivation

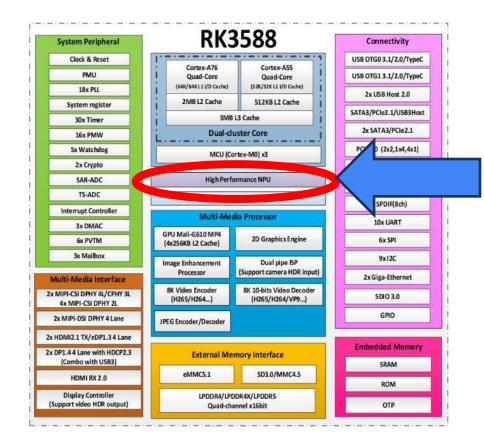
 Replace the « NVIDIA thing » by something much cheaper... either embedded in the CPU or as an optional module



Using AI hardware accelerators for real-time DSP Sylvain AZARIAN – F4GKR

Also in mind...

KEY TECHNICAL SPECIFICATIONS


	Axelera		to a number of	NOT TESTE	
	Security Features	Secure Boot, Root of Trust			
	Typical Application Power	4-8 W			25
	Thermal solution	Optional standalone active cooling			
	Operating temperature	-20 to +70°C			
ſ	Peak INT8 TOPS	214			
	AIPU Memory	1 GB DRAM			
	AIPU (AI Processing Unit)	1x Metis AIPU		<u> </u>	
	Host Interface	PCle Gen3 x4 - 4 GB/s bidirectional			
	Form Factor	M.2 2280 M-key			СРU СРU СРU СРU СРU
					- Balan

Using AI hardware accelerators for real-time DSP

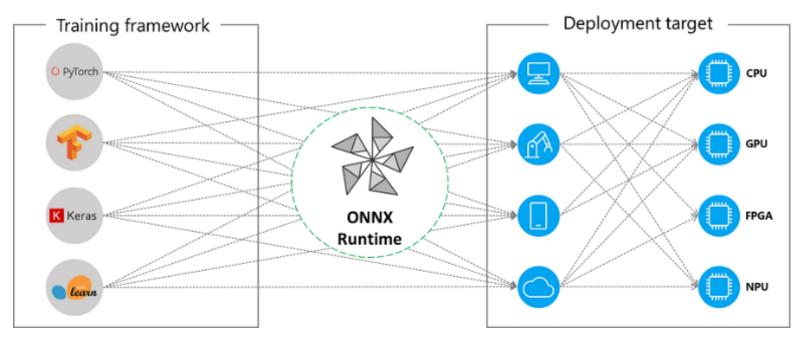
Sylvain AZARIAN - F4GKR

The NPU promise

NPU (Neural Process Unit) :

- Neural network acceleration engine with processing performance up to 6 TOPS
- Include triple NPU core, and support triple core co-work, dual core co-Work, and work independently.
- Embedded **384KBx3** internal buffer. Multi-task, multi-scenario in parallel.
- Support deep learning frameworks: TensorFlow, Caffe, Tflite, Pytorch, Onnx NN, Android NN, etc.

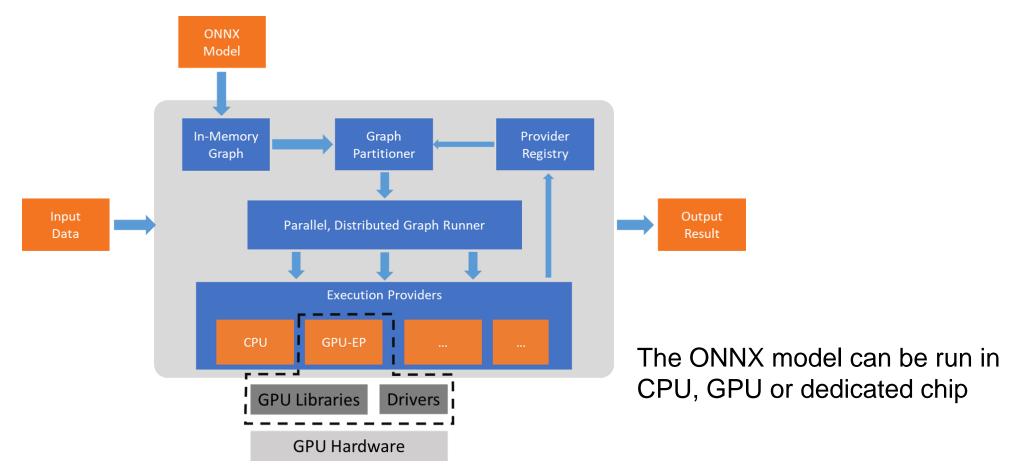
Using AI hardware accelerators for real-time DSP Sylvain AZARIAN – F4GKR


The NPU promise

Model support In addition to exporting the model from the corresponding respository, the models file are available on https://console.zbox.filez.com/l/8ufwtG (key: rknn).						WAR	NING !				
					n	FP16 INT8					
Category	Name	Dtype	Model Download Link	S	Support platforn						
Classification	mobilenet	FP16/INT8	mobilenetv2-12.onnx	RK3566 RK3 RV1103 RV1 RK1808 RK3 RV1109 RV1	399PRO						
Classification	<u>resnet</u>	FP16/INT8	resnet50-v2-7.onnx	RK3566[RI RK1808[RI RV1109]R							
Object Detection	y <u>olov5</u>	FP16/INT8	<u>./yolov5s_relu.onnx</u> <u>./yolov5n.onnx</u> ./yolov5s.onnx	RK3566 RI RV1103 R' RK1808 RI	demo	model_name	inputs_shape	dtype	RK3566 RK3568	RK3562	RK3588 @single_core
				RV1109 R'	mobilenet	mobilenetv2-12	[1, 3, 224, 224]	INT8	180.7	281.3	450.7
					resnet	resnet50-v2-7	[1, 3, 224, 224]	INT8	37.9	54.9	110.1
					yolov5	yolov5s_relu	[1, 3, 640, 640]	INT8	25.5	33.2	66.1

Using AI hardware accelerators for real-time DSP Sylvain AZARIAN – F4GKR

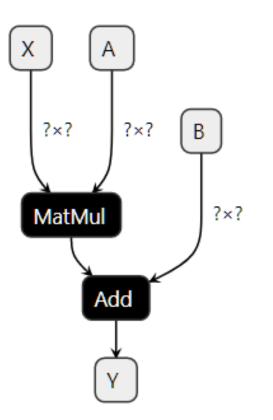
What is ONNX ???


Open Neural Network Exchange (ONNX)

ONNX is an intermediary machine learning framework used to convert between different machine learning frameworks.

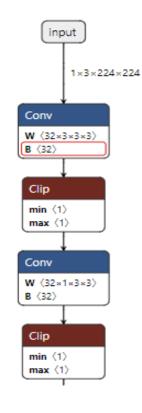
Using AI hardware accelerators for real-time DSP Sylvain AZARIAN – F4GKR

ONNX Runtime ("Execution Provider")



Using AI hardware accelerators for real-time DSP Sylvain AZARIAN – F4GKR

Introduction to ONNX


- Processing is described by a graph: the execution flow
- Multiple inputs and outputs possible
- Inputs and outputs are "tensors"
- Each node of the graph preforms one operation

[Y] = [X] * [A] + [B]

Using AI hardware accelerators for real-time DSP Sylvain AZARIAN – F4GKR

Introduction to ONNX

🔉 ONN	Х	 Tin (tensor(bflost)), (↑ 2wk lo log tensor(flost), tensor(flost)); Constrain input and output types to float tensors.
NNX 1.18.0 ocumentation		Conv. 11 vs 22
		Conv - 11
Search	-	Version
reduction to ONNX	~	name: Conv (GitHub)
1 Reference	- U	domain: main
NNX Operators	~	aince_version: 11
Sample operator test code		- function: False
		 support_level: Support Type: Covers
Abs		• shape inference: True
Acca	~	this version of the operator has been available since version 11 .
Acosh	~	
Add	~	Summary
AttineGrid		The convolution operator consumes an input tensor and a filter, and computes the output.
And	~	Attributes
ArgMax	~	a sub- and arrange of the large sub-
ArgMin	~	 suto_pad - STRING (default is 'norser'): and must be either MANNEL LAND, UNDER LAND, UNDER LAND, When default other is
Avin	~	auto_pad must be either NOTSEL, SAME_UPPER, SAME_LOWER or VALID. Where default value is NOTSET, which means explicit padding is used. SAME_UPPER or SAME_LOWER mean pad the input so
Asinh	~	that initial_stage[1] = cell(input_stage[1] / steldes[1]) for each axis if. the padding is split
Atao		between the two sides equally or almost equally (depending on whether it is even or odd). In case the
		padding is an odd number, the extra padding is added at the end for SAME_UPPER and at the
Atenh	~	beginning for SAME_LOWER.
AveragePool	~	 dilations - INTS :
RatchNormalization	~	dilation value along each spatial axis of the filter. If not present, the dilation defaults is 1 along each
Bernoulli	~	spatial axis.
Britshift		 group - INT (default is ¹1¹);
BitwiseAnd		number of groups input channels and output channels are divided into.
DitwiseNot		kernel shape - INTS ;
BrimseOr		The shape of the convolution kernel. If not present, should be interred from input W.
BitwiseXor		 pads - INTS :
BlackmanWindow		Padding for the beginning and ending along each spatial axis, it can take any value greater than or
Cast	~	equal to 0. The value represent the number of pixels added to the beginning and end part of the
CastLike	~	corresponding axis. [ask: format should be as follow [x1_begin, x2_beginx1_end, x2_end,], where xi_begin the number of pixels added at the beginning of axis 1 and xi_end, the number of pixels
Coll		xi_begin the number of pixels added at the beginning of axis (1) and xi_end, the number of pixels added at the end of axis (1), this attribute cannot be used simultaneously with auto_pad attribute. If
Calu		not present, the padding defaults to 0 along start and end of each spatial axis.

Using AI hardware accelerators for real-time DSP

Sylvain AZARIAN – F4GKR

Introduction to ONNX

Designed for AI:

- most of the operators are the common functions used in Deep Learning
- Embedded chips are mainly targeting real-time image processing and are optimized for inputs=images, outputs=detections of objects

What could we have ?

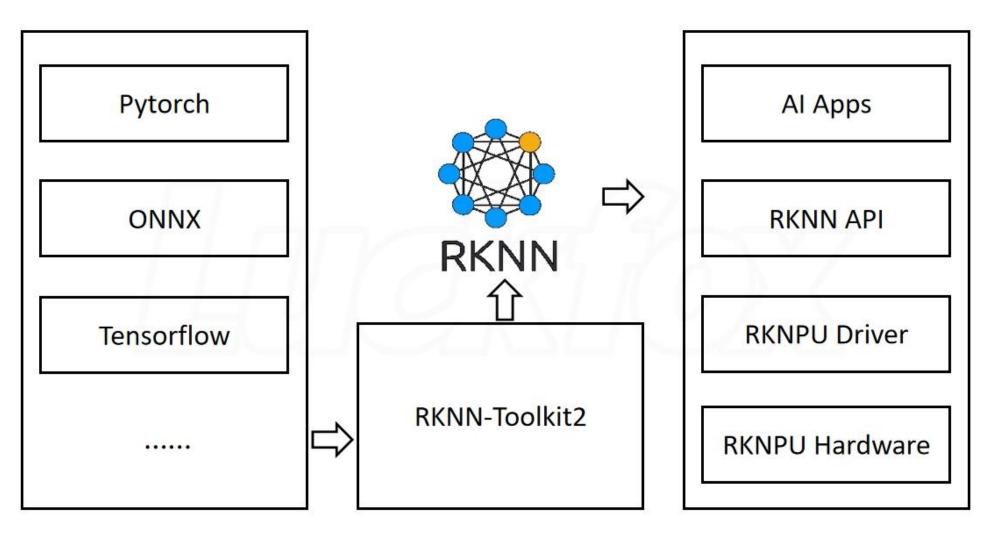
- Some « SDR » blocks able to run either on dedicated hardware or by main CPU (emulation) like recently proposed for Audacity
- Possibility to use low-cost Linux platforms with decent performance
- Have a flowgraph tool « GnuRadio Companion like » to create DSP chains ?

Hold my beer ?

- We discuss ONNX models, but in ROCKCHIP the proposed API is <u>RKNN</u>, supporting only a subset of instructions
- Google CORAL uses "Tensor Flow Light" models
- My understanding : RKNN is ~ ONNX version 11...

RKNNToolkit2 OPs Support

ONNX OPs supported by RKNN Toolkit2


According to ONNX official instructions, the corresponding ONNX opset version is 19. follows: (For more restrictions, please refer to <RKNN_Compiler_Support_Operator_List>)

	Operators	Remarks	
Abs		Not Supported	
Acos		Not Supported	
Acosh		Not Supported	
Add			
And			
ArgMax			
ArgMin			
Asin		Not Supported	Λ
Asinh		Not Supported	
Atan		Not Supported	
Atanh		Not Supported	

https://github.com/airockchip/rknn-toolkit2/blob/master/doc/RKNNToolKit2_OP_Support-2.3.0.md

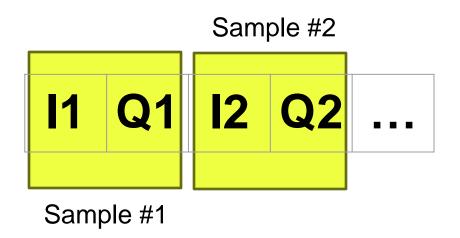
Using AI hardware accelerators for real-time DSP Sylvain AZARIAN – F4GKR

RKNN

Using AI hardware accelerators for real-time DSP Sylvain AZARIAN – F4GKR

What do we need ?

- **Complex** number arithmetic (multiplication...)
- **Convolution** (for filters)
- Trigonometric functions (cos() and sin() to generate our local oscillators)


Do we have this ? No but it is doable*!

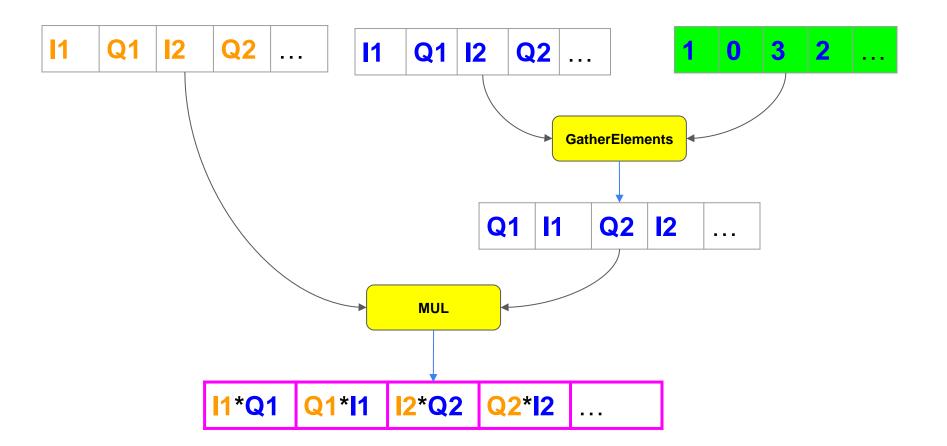
* (done in ONNX so far...)

Complex numbers

- We need two numbers: the *real* part and the *imaginary* part
- The optimal approach here is to keep the interleaved approach

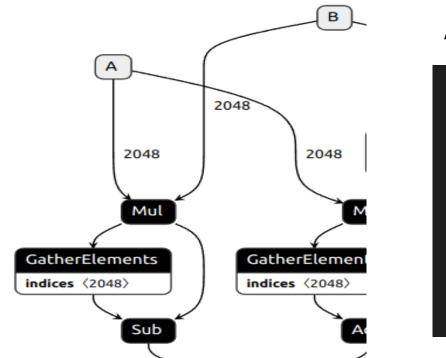
Complex (numbers) multiplications

• We have two input vectors of numbers; we want the pointwise multiplication of the two

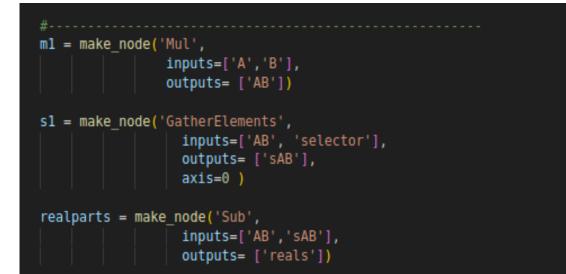

A • B

11*11-Q1*Q1	1*Q1+Q1* 1	12*12-Q2*Q2	12*Q2+Q2*12	
-------------	------------	-------------	-------------	--

FOSDEM²⁵



The ONNX Fun of complex multiplication



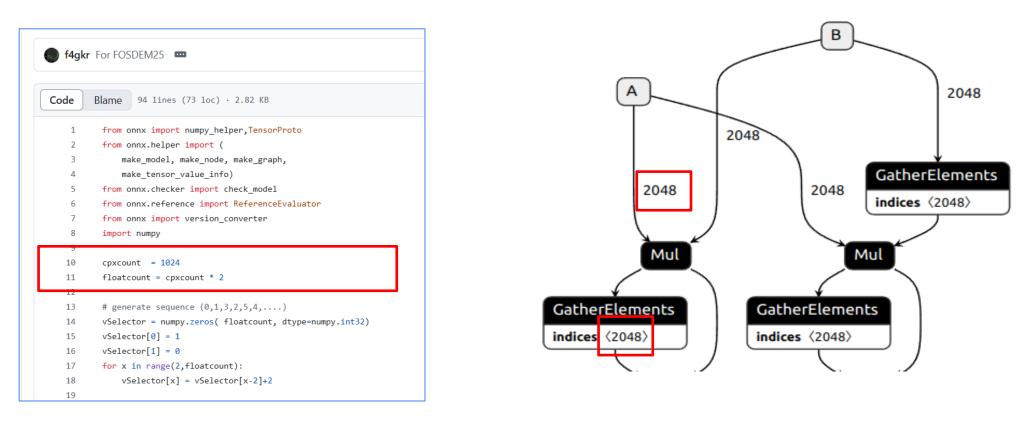
Using AI hardware accelerators for real-time DSP Sylvain AZARIAN – F4GKR

Implementation

A Python function generates the ONNX graph

Using AI hardware accelerators for real-time DSP Sylvain AZARIAN – F4GKR

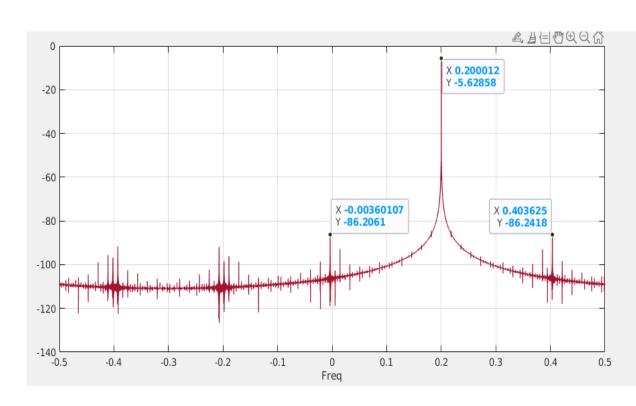
FOSDEM²⁵


The complex multiplication

Using AI hardware accelerators for real-time DSP Sylvain AZARIAN – F4GKR

Size matters...

- The input "tensor" (the data) has a fixed size, and this size is IN the ONNX file...
- My Python code generates the ONNX files for a given size...


FOSDEM²⁵

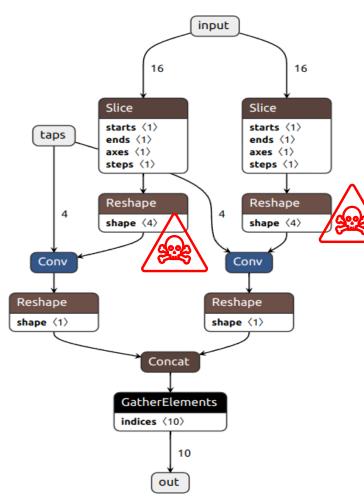
Using AI hardware accelerators for real-time DSP

Sylvain AZARIAN - F4GKR

IQ Oscillator

alpha 1 Expand shape <2> Mul B (32768) Cos Sin Where condition (32768) 32768 out

« alpha » parameter is the phase increment

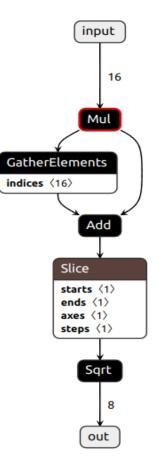

Example :

- SR : 1 MHz
- Oscillator at 200 kHz
- 16384 complex samples
- Output from Python + CPU Runtime

Using AI hardware accelerators for real-time DSP Sylvain AZARIAN – F4GKR

FOSDEM²⁵

Filter



Notes :

- Taps are real
- Real part and imaginary part split and computed separately
- Output formed by re-interleaving real & imaginary parts
- Fun: the "Conv" operator as some "nice" requirements and wants "tensors" with specific shapes

Using AI hardware accelerators for real-time DSP Sylvain AZARIAN – F4GKR

AM demodulator

Notes :

- Taps are real
- Real part and imaginary part split and computed separately
- Output formed by re-interleaving real & imaginary parts

Using AI hardware accelerators for real-time DSP Sylvain AZARIAN – F4GKR

FM demodulator

- RKNN does not implement *atan()*
- More time needed...

Is this mature ?

This is an invalid model. Type Error: Type 'tensor(double)' of input parameter (selector) of operator (GatherElements) in node () is invalid

Load model from ../../../cpxmult.onnx failed:/onnxruntime_src/onnxruntime/core/graph/model_load_utils.h:46 void onnxruntime::model_load_utils::ValidateOpsetForDomain(const std::unordered_map<std::__cxx11::basic_string<char>, int>&, const onnxruntime::logging::Logger&, bool, const std::string&, int) ONNX Runtime only *guarantees* support for models stamped with official released onnx opset versions. Opset 22 is under development and support for this is limited. The operator schemas and or other functionality may change before next ONNX release and in this case ONNX Runtime will not guarantee backward compatibility. Current official support for domain ai.onnx is till opset 21.

Type Error: Type 'tensor(int32)' of input parameter (selreal) of operator (Where) in node () is invalid.

References

- RKNN : https://github.com/airockchip/rknn-toolkit2/
- Supported : <u>https://github.com/airockchip/rknn-</u> toolkit2/blob/master/doc/RKNNToolKit2_OP_Support-2.3.0.md
- ONNX operators : <u>https://onnx.ai/onnx/operators/index.html</u>
- Python API: <u>https://github.com/scailable/sclblonnx</u>
- Netron to view the graphs : <u>https://github.com/lutzroeder/netron</u>
- Python intro: <u>https://towardsdatascience.com/creating-editing-and-merging-onnx-pipelines-897e55e98bb0</u>

My conclusion

- Promising but clearly needs time
- Software architecture:
 - Have a "signal flow" description (very much like GnuRadio companion)
 - Generate the ONNX file
 - Run it...
- Benchmarks are required

Where is that ?

- <u>https://github.com/f4gkr/onixradio</u>
- Code :
 - Python generators for some DSP blocks provided
 - C code to run the complex multiplication as an example
 - Still a lot of work to be done...

