
Arm Solutions at Lightspeed

Arm Solutions at Lightspeed

AOSP Bring-up Using
Software Rendering

Product names, logos, brands, products and other trademarks featured or 
referred to within this document are the property of their respective 
trademark holders.

Amit Pundir
aosp-devroom, FOSDEM ’25



Arm Solutions at Lightspeed

About Me!

● Senior Engineer at Linaro

● 10+ years of AOSP (Android Open 
Source Project) bringup and 
maintenance

● pundir on #aosp-developers, 
#linaro-android IRC channels at 
OFTC.net



Arm Solutions at Lightspeed

● Software Rendering in AOSP
○ Why?
○ How?

Agenda!



Arm Solutions at Lightspeed

Why Software Rendering?

Software rendering support in AOSP is useful for several reasons:
● Missing hardware acceleration (GPU) support

○ Running AOSP on virtual platforms or on the devices with no GPU support or on low-end devices 
with limited GPU capabilities

● Missing or limited software support
○ Running AOSP on an early device prototype with limited s/w support
○ Broken software support due to incompatible (legacy) vendor blobs

● Headless devices: Embedded / IoT / low-power devices
○ Devices that do not require or include a display but may still need some form of graphical rendering 

to interact with Android’s internal UI components.
○ Software rendering maybe be more power efficient for devices which avoid heavy reliance on 

graphics hardware for complex computations
● Testing and Development

○ To debug or isolate GPU related bugs



Arm Solutions at Lightspeed

Software rendering with SwANGLE!

AOSP recommends using SwiftShader and ANGLE libraries
for software rendering
● SwiftShader's GL libraries got deprecated, and replaced with ANGLE

(Almost Native Graphics Layer Engine)
● SwANGLE: ANGLE (GLES implementation) on top of SwiftShader's

Vulkan implementation (Pastel)

https://android.googlesource.com/platform/external/swiftshader/
https://chromium.googlesource.com/angle/angle/+/main/README.md


Arm Solutions at Lightspeed

linaro_swr-trunk_staging-userdebug

● Reference: linaro_swr-trunk_staging-userdebug target in AOSP
○ A generic AOSP build target using software rendering

■ Developed and tested on Qcom target devices,
but generic enough to boot on any arm64 platform

○ Use SKIA GL instead of the default Vulkan backend otherwise
we see a lot of display glitches due to missing sync support 

○ For rendering simplicity, we disable the compressed image format

https://android.googlesource.com/device/linaro/dragonboard/+/refs/heads/main/linaro_swr/


Arm Solutions at Lightspeed

SwANGLE with virtual drm/kms driver!

● AOSP bring-up using Virtual KMS (vkms) driver and SwANGLE
○ Enable VKMS display driver module
○ Set hwcomposer to use the correct display

○ Label /dev/dri/cardX a gpu_device to keep selinux Gods happy
○ Disable prime shader cache

■ Speeds up the boot time significantly by disabling the shader pre-runs
before booting up to UI



Arm Solutions at LightspeedArm Solutions at Lightspeed

Amit Pundir <amit.pundir@linaro.org>
IRC: pundir on #linaro-android, #aosp-developers @OFTC
aosp-devroom, FOSDEM ‘25


