
Making Data Fun Again

Extending EESSI to improve Research Data Management

Thomas Röblitz, University of Bergen
FOSDEM'25, HPC devroom, Feb 2nd

What is Research Data (Management)?

Research data is any data (consumed or produced) in research.

Research Data Lifecycle

By Patrick Hochstenbach, Ghent University

Research Data Management comprises all

kinds of activities to “organise” research data

with the goal to enable its reuse.

Dilemma

Structure Creative Chaos (the fun part)

?

workflows

DMPs

The actual problem with Research Data Management

● not acknowledged in hiring processes and proposal evaluations

● underfunded (varying support from organizations)

● costs time

➔ researchers do the minimum to satisfy (funders‘) requirements

● Plus, RDM is just one issue for researchers using IT…

What in IT do researchers struggle with?

● many IT systems: laptop, cloud, HPC

● use many software packages

● develop code for increasingly heterogeneous architectures

● manage their own virtual data infrastructure

○ low-level (data) management operations to move data between systems

○ manage storage spaces with different performance and quota

How EESSI helps already and what could be next?

● many IT systems: laptop, cloud, HPC

● easy access to many software packages

● develop code for increasingly heterogeneous architectures

● manage their own virtual data infrastructure

○ low-level (data) management operations to move data between systems

○ manage storage spaces with different performance and quota

?

“Extending” EESSI to make data handling easier

Don’t limit creativity Avoid (low-level) data
management operations

"extend" EESSI

everyone should be already using EESSI

EESSI provides a good basis

EESSI in a nutshell

● On-demand streaming of optimized scientific software installations

● Works on any Linux distribution thanks to EESSI compat layer

● Uniform software stack across various systems: laptop, HPC, cloud, ...

● Community-oriented: let's tackle the challenges we see together!

EESSI's layered architecture
Te

st
in

g

Software layer

Optimized applications + dependencies

Filesystem layer

Distribution of the software stack

Compatibility layer

Levelling the ground across client OSs

Host OS

provides

network &

GPU

drivers,

resource

manager

(Slurm), ...

Host operating system (Linux, (macOS), WSL)

How can we "extend" EESSI?

● don't want to rebuild every software installation

● better: modify or augment a core component

● assumption: most data accesses pass through compat layer

● key data access functions:
○ *open*: open, fopen, openat, fopenat,

open64, fopen64, freopen
○ read, write

○ close, fclose

● all part of GLIBC: changes there apply to all/most

software

Software
layer

Compat
layer

FS
layer

Host operating system
(Linux, (macOS), WSL)

How can we change GLIBC functions?

● Directly change GLIBC
○ pros: transparent for users, no change needed
○ cons: is always on whether needed/wanted or not; may have undesired

consequences; need to change a shipped installation

● Wrap functions and use $LD_PRELOAD

○ pros: keep default GLIBC; easily switched on/off by users
○ cons: need to adjust "every" run for full coverage; may create conflicts if set

globally

● For prototype: wrap functions and use $LD_PRELOAD

What could we do with wrapping GLIBC functions?

log information about
certain calls (open, exec, ...)

post-process logs to create data
flow graphs

enable using remote data
“directly”

no manual download of data
before processing it

define a virtual data
infrastructure

declare which data is needed

runtime ensures that data is available

Idea 1: log information about certain GLIBC calls

● Example: open()

int open(const char* pathname, int flags, mode_t mode) {

printf("vdi_log: call %s with '%s', %d, %d\n",

__func__, pathname, flags, mode);

int (*actual_open)() = dlsym(RTDL_NEXT, __func__);

return actual_open(pathname, flags, mode);

}

● gcc -fPIC -shared -o libvdi.so vdi.c -ldl

● LD_PRELOAD=libvdi.so cat /etc/os-release

Idea 1: log information about certain GLIBC calls

● Log lines

timestamp hostname user $HOME pid ppid pgid

$PWD program argv starttime elapsed call

call_args

● analyse logs to construct data flow graph

● each line produces

pdflatexpnggnuplot png

Idea 1: log information about certain GLIBC calls

● Log lines

timestamp hostname user $HOME pid ppid pgid

$PWD program argv starttime elapsed call

call_args

● analyse logs to construct data flow graph

● each line produces

connect via

files
pdflatexpnggnuplot png

Idea 1: log information about certain GLIBC calls

● Use cases
○ automatically describe how results (data/figs) were produced

○ automatically generate "workflow" descriptions

○ detect if some (input) files were not used

○ create a timeline of the work (travel back finally possible)

○ improve program start-up times (e.g., Spindle)

○ EESSI: ensure that build process used the correct data/libs

○ EESSI: determine files to pre-load caches

https://github.com/hpc/Spindle

Idea 2: enable access to remote data "directly"

Pattern: a file/dataset is downloaded, then it is used

Goal: avoid the manual download step

Benefits:
makes explicit which data source has been used

if data has a PID -> can get metadata for dataset

Idea 2: enable using remote data “directly”

● Example: open()

int open(const char *pathname, int flags, ...) {

if (is_url(pathname)) {

if (download(pathname, &local_path) == 0) {

return actual_open(local_path, flags);

}

}

}

Idea 2: enable using remote data “directly”

● Example: open()
● gcc -fPIC -shared -o libvdi.so vdi.c -ldl -

lcurl

● (optional) export
VDI_DOWNLOAD_BASE=/project/vdi_example

○ default: /tmp/$USER/vdi/downloads

● vdi run wc -l
https://zenodo.org/records/13830932/files/ru
thalicia_longipes_spades_01.fasta.3.fasta?do
wnload=1

Idea 2: enable using remote data “directly”

● Example: open()
● gcc -fPIC -shared -o libvdi.so vdi.c -ldl -

lcurl

● (optional) export
VDI_DOWNLOAD_BASE=/project/vdi_example

○ default: /tmp/$USER/vdi/downloads

● vdi run wc -l
https://zenodo.org/records/13830932/files/ru
thalicia_longipes_spades_01.fasta.3.fasta?do
wnload=1

"bit" long to write - could support alternatives:
doi://10.5281/zenodo.13830932 or
zenodo://13830932 or
zenodo://13830932?ruthalicia_longipes_spades_01.fasta.3.fasta

Idea 2: enable using remote data “directly”

● works surprisingly well - though not with all commands such as tar

● only for read access

● write could work too:

○ requires some kind of API at receiver (zenodo provides an API)

○ upload when file closed

● should be possible to optimize

○ only download once or remove download when file closed

○ download a dataset early to prefetch it

● using PIDs (DOI, etc) allows to obtain metadata

Idea 3: define a virtual data infrastructure (vdi)

● What if all data is accessed via some prefix/namespace?

vdi://namespace/path_or_label/file[?params]

● A researcher would have to...

○ give the virtual data infrastructure a name (namespace)

○ register data/files/URLs with it

Idea 3: define a virtual data infrastructure (vdi)

● Runtime could then

○ figure out where the file is stored (locally / remotely),

○ redirect or load the file,

○ upload files to a sync server or service,

○ create copies,

○ give access to others,

○ ...

Idea 3: define a virtual data infrastructure (vdi)

● First step: create namespace, add files, obtain URL, …
● Commands added

vdi view create <name>

vdi view list

vdi view upload <name> <file>

vdi view files <name>

vdi view geturl <name> <file>

Manage namespaces via GUI

Idea 3: define a virtual data infrastructure (vdi)

● Example remote data access

vdi run head https://vdi.nessi.no/download/Snakemake/genome.fa

>I dna_rm:chromosome chromosome:R64-1-1:I:1:230218:1 REF
NN
NNTCCTAACACTACCCTAACACAGCCCTAATCTAACCCTGGCCAACCTGTCTCTCAACTT
ACCCTCCATTACCCTGCCTCCACTCGTTACCCTGTCCCATTCAACCATACCACTCCGAAC
CACCATCCATCCCTCTACTTACTACCACTCACCCACCGTTACCCTCCAATTACCCATATC
CAACCCACTGCCACTTACCCTACCATTACCCTACCATCCACCATGACCTACTCACCATAC
TGTTCTTCTACCCACCATATTGAAACGCTAACAAATGATCGTAAATAACACACACGTGCT
TACCCTACCACTTTATACCACCACCACATGCCATACTCACCCTCACTTGTATACTGATTT
TACGTACGCACACGGATGCTACAGTATATACCATCTCAAACTTACCCTACTCTCAGATTC
CACTTCACTCCATGGCCCATCTCTCACTGAATCAGTACCAAATGCACTCACATCATTATG

● Basic proof of concept

Status

● prototype implementation

● vdi cli command and wrapper library
○ open source, builds and installs in less than 1 min
○ could be shipped with EESSI

● vdi "server" (frontend, API, backend/storage)
○ supports easy creation of data flow graphs
○ supports basic virtual data infrastructure

Outlook

● data flow graph
○ exports: Nextflow, snakemake, LaTeX, ...
○ intercept more functions: *exec*
○ improve performance

● virtual data infrastructure
○ enable use of backends: iRODs, *Cloud, ...
○ runtime that actively manages data in the

background

Summary

● Working with research data is not so easy

● Two tools
○ logging data accesses and create data flow graphs
○ effortlessly accessing remote data

● Early prototype: vdi client, wrapper library, frontend & backend

➔ Researchers can focus on working with the data … tools take care

of the data management

Resources

● Original report describing the ideas: https://doi.org/10.5281/zenodo.14788711

● Follow-up case study with iRODS: https://doi.org/10.7494/csci.2012.13.4.21

● EESSI – European Environment for Scientific Software Installations

○ docs - Join EESSI Slack - Paper (open access) - github

● MultiXscale – EuroHPC Centre of Excellence (main development of EESSI)

● Code developed for this talk: https://github.com/virtual-data-infrastructure

https://doi.org/10.5281/zenodo.14788711
https://doi.org/10.7494/csci.2012.13.4.21
https://www.eessi.io/
https://eessi.io/docs
https://join.slack.com/t/eessi-hpc/shared_invite/zt-2wg10p26d-m_CnRB89xQq3zk9qxf1k3g
https://doi.org/10.1002/spe.3075
https://github.com/EESSI
https://www.multixscale.eu/
https://github.com/virtual-data-infrastructure

	Slide 1: Making Data Fun Again
	Slide 2: What is Research Data (Management)?
	Slide 3: Dilemma
	Slide 4: The actual problem with Research Data Management
	Slide 5: What in IT do researchers struggle with?
	Slide 6: How EESSI helps already and what could be next?
	Slide 7: “Extending” EESSI to make data handling easier
	Slide 8: EESSI in a nutshell
	Slide 9: EESSI's layered architecture
	Slide 10: How can we "extend" EESSI?
	Slide 11: How can we change GLIBC functions?
	Slide 12: What could we do with wrapping GLIBC functions?
	Slide 13: Idea 1: log information about certain GLIBC calls
	Slide 14: Idea 1: log information about certain GLIBC calls
	Slide 15: Idea 1: log information about certain GLIBC calls
	Slide 16: Idea 1: log information about certain GLIBC calls
	Slide 17: Idea 2: enable access to remote data "directly"
	Slide 18: Idea 2: enable using remote data “directly”
	Slide 19: Idea 2: enable using remote data “directly”
	Slide 20: Idea 2: enable using remote data “directly”
	Slide 21: Idea 2: enable using remote data “directly”
	Slide 22: Idea 3: define a virtual data infrastructure (vdi)
	Slide 23: Idea 3: define a virtual data infrastructure (vdi)
	Slide 24: Idea 3: define a virtual data infrastructure (vdi)
	Slide 25: Idea 3: define a virtual data infrastructure (vdi)
	Slide 26: Status
	Slide 27: Outlook
	Slide 28: Summary
	Slide 29: Resources

