
Status and Desiderata for Syscall
Tracing and Virtualization Support

Renzo Davoli, Davide Berardi
FOSDEM 2025: February 2nd, 2025

This work was partially supported by the project SERICS (PE00000014) under the NRRP MUR
program funded by the European Union - NextGenerationEU.



System call tracing 1/ 22

We will focus on Linux system in this presentation.
Mainly for debug features system calls can be hijacked to print information on which
systemcall has been executed:
An example of this feature is strace, a program that prints every systemcall executed
by another program.

https://github.com/virtualsquare/syscall_tracing

https://github.com/virtualsquare/syscall_tracing


System call based virtualization 2/ 22

System calls are an interface to virtualize the system creating
a virtualization similar to os-level one (i.e. namespaces).

With this feature is possible to create the concept of MLOS:
Multiple Layer Operating System. Every layer has the same
interface of the other (systemcalls, e.g. POSIX?)

https://github.com/virtualsquare/syscall_tracing

https://github.com/virtualsquare/syscall_tracing


How to hijack systemcalls 3/ 22

Systemcalls can be hijacked by instructing the kernel to tell to an userspace program
(hypervisor) which systemcall has been invoked and with which parameters.

We will refer to this technique as “hypervisor mode”.
On the other side programs can declare to be traced by themselves (e.g. by changing
the function called when executing a specific systemcall-wrapper, we refer to this as
“self-virtualization”.

https://github.com/virtualsquare/syscall_tracing

https://github.com/virtualsquare/syscall_tracing


How to hijack systemcalls 4/ 22

https://github.com/virtualsquare/syscall_tracing

https://github.com/virtualsquare/syscall_tracing


Main users 5/ 22

There are many use cases for these approaches, with no silver bullet. For instance, we
could classify every approach using the following plot:

https://github.com/virtualsquare/syscall_tracing

https://github.com/virtualsquare/syscall_tracing


Main users 6/ 22

Some users of this feature (hypervisors) are:
fakeroot : a program to “trick” root-only programs to be used by unprivileged

users.
wine : a compatibility layer to run Windows programs under Linux.

gVisor : a total rewrite of a kernel in go language. Made by Google, its main
features are security and performance (due to this fact it employs real
virtualization, KVM, when available).

https://github.com/virtualsquare/syscall_tracing

https://github.com/virtualsquare/syscall_tracing


Main users 7/ 22

Some users of this feature (hypervisors) are:
vuos and mlos Combining various approaches, we created a multi layered operating

system, which can be used to focus on security (e.g. blocking system
calls or higjacking files), features (e.g. adding support for new network
protocols or file systems), and performance (selecting the best emulation
method).

https://github.com/virtualsquare/syscall_tracing

https://github.com/virtualsquare/syscall_tracing


Problem: Security 8/ 22

Let us suppose to trace a program for security. We want to confine it in a
sub-filesystem.
If we trace it with a not-so-strong method (e.g. purelibc), it can escape the
sandbox!!!

https://github.com/virtualsquare/syscall_tracing

https://github.com/virtualsquare/syscall_tracing


Problem: Speed 9/ 22

Multi threading is not easy to achieve in all the implementation, we will get to this for
every case. For instance, how to create a multi threaded hypervisor to handle multiple
events (e.g. select / poll?).

Hypervisor mode is slow, it pass in kernel space two times per syscall, slowing down
the programs.

https://github.com/virtualsquare/syscall_tracing

https://github.com/virtualsquare/syscall_tracing


Problem: Speed 10/ 22

1 timing (no syscall capture , for comparison):
2 time for i in {1..1000}; do cat /etc/hostname > /dev/null; done
3 real 0m0.988s
4 user 0m0.655s
5 sys 0m0.372s

https://github.com/virtualsquare/syscall_tracing

https://github.com/virtualsquare/syscall_tracing


Technique 1: ptrace 11/ 22

Ptrace can be used to hijack system calls. A
tracer process can be designed to wake up when
the child execute a system call. The systemcall
gets to the tracer which can change the system-
call number and make the child continue.

Event notification: wait(2)
+ Tracks every systemcall
+ Hypervisor Mode
+ Easy to implement
+ Extremely Tested
- Somewhat architecture dependant
- Difficulty in Multithreading
- Speed
- Security

1 time for i in {1..1000}; do ./ptrace_virt /etc/passwd > /dev/null; done
2 real 0m5.985s
3 user 0m2.347s
4 sys 0m2.615s

https://github.com/virtualsquare/syscall_tracing

https://github.com/virtualsquare/syscall_tracing


PTRACE_GET_SYSCALL_INFO 12/ 22

Getting the systemcall information in ptrace is difficult and could be problematic, for
instance registers are get, one by one, by using a memory area which is architecture
dependant (PTRACE_PEEK_USER).

PTRACE_GETREGSET and PTRACE_SETREGSET have been developed to get
registers in block, but they’re still architecture dependent.

To overcome this problem of incompatibility between architectures,
PTRACE_GET_SYSCALL_INFO has been developed.

https://github.com/virtualsquare/syscall_tracing

https://github.com/virtualsquare/syscall_tracing


Desiderata: PTRACE_SET_SYSCALL_INFO 13/ 22

We got PTRACE_GET_SYSCALL_INFO, but how can we modify the systemcall that
gets executed or its parameters? We still need to rely on *PEEK*/*POKE*
architecture dependant interfaces!!!

PTRACE_SET_SYSCALL_INFO is still missing :(

Fortunately currently discussed in the kernel mailing list thanks to Dmitry V. Levin :)

https://github.com/virtualsquare/syscall_tracing

https://github.com/virtualsquare/syscall_tracing


Technique 2: ptrace + seccomp 14/ 22

Seccomp can be used in conjunction with ptrace
to make the process a little bit more secure. It
avoids a second event (ptrace gets an event for
every syscall in and out).

Event notification: wait(2)
+ Tracks every systemcall
+ Hypervisor Mode
+ Easy to implement
+ Well tested
- Somewhat architecture dependant
- Difficulty in Multithreading
- Speed!!!

1 time for i in {1..1000}; do ./ptrace_seccomp_virt cat /etc/passwd > /dev/
null; done

2 real 0m4.342s
3 user 0m2.182s
4 sys 0m1.631s

https://github.com/virtualsquare/syscall_tracing

https://github.com/virtualsquare/syscall_tracing


Technique 3: seccomp_unotify 15/ 22

Seccomp can also be used without ptrace. It notifies
a tracer of a systemcall and then the tracer exe-
cutes the modified system call and return the
result.

It requires tricks to send the file de-

scriptor from the tracee to the tracer and
back (pidfd_getfd over shared memory and SEC-
COMP_IOCTL_NOTIF_ADDFD).

Event notification: fd+ioctl
+ Tracks every systemcall
+ Hypervisor Mode
+ Security
- Tricky!
- Speed

1 time for i in {1..1000}; do ./seccomp_unotify_virt cat /etc/passwd > /dev
/null; done

2 real 0m4.585s
3 user 0m1.132s
4 sys 0m0.776s

https://github.com/virtualsquare/syscall_tracing

https://github.com/virtualsquare/syscall_tracing


Technique 3: seccomp_unotify 16/ 22

https://github.com/virtualsquare/syscall_tracing

https://github.com/virtualsquare/syscall_tracing


Desiderata: eBPF maps in seccomp 17/ 22

Currently seccomp only support BPF, not eBPF, with eBPF it is possibile to use maps
(with no decreases of security!) and we could accelerate virtualization of file
descriptors.
Let us assume the following problem:
1. We could have mixed real and virtualized file descriptors (for instance we

virtualized open but not socket).
2. Then a systemcalls which refers to a real file descriptor (for instance read on the

socket) is requested to the system.
3. The system wakes up the hypervisor (tracer)
4. The tracer understand that the file descriptor is not a virtual one, returning the

control to the virtualized process.
5. The kernel returns the control to the traced process.

https://github.com/virtualsquare/syscall_tracing

https://github.com/virtualsquare/syscall_tracing


Desiderata: eBPF maps in seccomp 18/ 22

Currently seccomp only support BPF, not eBPF, with eBPF it is possibile to use maps
(with no decreases of security!) and we could accelerate virtualization of file
descriptors.
Let us assume the following problem:
1. We could have mixed real and virtualized file descriptors (for instance we

virtualized open but not socket.
2. Then a systemcalls which refers to a real file descriptor (for instance read on the

socket) is requested to the system.
3. The system wakes up the hypervisor (tracer)
4. The tracer understand that the file descriptor is not a virtual one, returning the

control to the virtualized process.
5. The kernel returns the control to the traced process.

Pure overhead!!!
https://github.com/virtualsquare/syscall_tracing

https://github.com/virtualsquare/syscall_tracing


Technique 4: prctl PR_SET_SYSCALL_USER_DISPATCH 19/ 22

prctl has a specific value that can be
used to get systemcall in userspace. It is
tricky!!! It is designed for foreign os emu-
lation (i.e. Wine or Limbo).

Self-Virtualization solution
Event notification: SIGSYS+ucontext
+ Speed
+ Thread safe
- EXTREMELY arch dependent
- Tricky!!!

1 time for i in {1..1000}; do ./prctl_purelibc_virt /etc/passwd > /dev/null
; done

2 real 0m0.913s
3 user 0m0.602s
4 sys 0m0.346s

https://github.com/virtualsquare/syscall_tracing

https://github.com/virtualsquare/syscall_tracing


Technique 5: purelibc 20/ 22

Purelibc is an “overlay” library. It aims to convert glibc from a libc+system interfacing
library to a libc-only library. A process can trace the system call generated by itself by
purelibc.

1 static sfun _native_syscall;
2 ...
3 _native_syscall=_pure_start(mysc,PUREFLAG_STDALL);

+ Fast!!!
+ Multithread safe
+ Can be preloaded for libraries or executables

+ Almost arch indipendent
- Incomplete interface!!
- Security

1 time for i in {1..1000}; do ./puretest_virt /etc/passwd > /dev/null; done
2 real 0m0.968s
3 user 0m0.618s
4 sys 0m0.384s

https://github.com/virtualsquare/syscall_tracing

https://github.com/virtualsquare/syscall_tracing


Desiderata: self virtualization 21/ 22

We could make the overall utilization cleaner by creating a simple modification to
glibc:
1. Create a “real” systemcall interface, which executes the real system call.
2. Hijack the systemcall function executing a callback in our “tracer”.

No current support in glibc for this approach.

https://github.com/virtualsquare/syscall_tracing

https://github.com/virtualsquare/syscall_tracing


Conclusions 22/ 22

▶ We saw different techniques that can be used to hijack system calls, currently
implemented in Linux kernel and userspace (loader).

▶ No silver bullet.
▶ Some desiderata, still lacking adopted support.
▶ A performant layer to virtualize systemcalls will create an extremely flexible

system! (more than using containers).

https://github.com/virtualsquare/syscall_tracing

https://github.com/virtualsquare/syscall_tracing


Thank you for your attention!
renzo@cs.unibo.it

dave@ihateyour.cloud | berardi.dav@gmail.com

renzo@cs.unibo.it
dave@ihateyour.cloud
berardi.dav@gmail.com

	Introduction

